Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Surface properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048257
EISBN: 978-1-62708-217-4
Abstract
Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified and it was suggested that it had resulted from surface defects. A decarburized surface layer and subsurface oxidation in the vicinity of pitting were revealed by metallographic examination of the 2% nital etched gear tooth sample. It was concluded that pitting had resulted as a combination of both the defects. The causes for the defects were reported based on previous investigation of heat treatment facilities. Oxide layer was caused by inadequate purging of air before carburization while decarburization was attributed to defects in the copper plating applied to the gear for its protection during austenitizing in an exothermic atmosphere. It was recommended that steps be taken during heat treatment to ensure neither of the two occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048253
EISBN: 978-1-62708-234-1
Abstract
Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core. It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content of the carburized case and hence lower hardness) was found to be the reason for failure. It was recommended that the depth of the carburized case on impeller drive gears be increased from 0.4 to 0.6 mm to 0.6 to 0.9 mm to improve load-carrying potential and wear resistance. A minimum case-hardness requirement was set at 81 HRA.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048131
EISBN: 978-1-62708-225-9
Abstract
The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed in the load test due to the split wire. The reason for the condition was interpreted to be overdrawing which resulted in intense internal strains, high circumferential surface tension, and decreased ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047817
EISBN: 978-1-62708-233-4
Abstract
A pushrod made by inertia welding two rough bored pieces of bar stock installed in a mud pump fractured after two weeks in service. The flange portion was made of 94B17 steel, and the shaft was made of 8620 steel. It was disclosed by visual examination that the fracture occurred in the shaft portion at the intersection of a 1.3 cm thick wall and a tapered surface at the bottom of the hole. The fatigue crack was influenced by one-way bending stresses initiated at the inner surface and progressed around the entire inner circumference. A heavily decarburized layer was detected on the inner surface of the flange portion and sharp corner was found at the intersection of the sidewall and bottom of the hole. It was concluded that the stress raiser due to the abrupt section change was accentuated by decarburized layer. As a corrective measure, the design of the pushrod was changed to a one-piece forging and circulation of atmosphere during heat treatment was permitted through a hole drilled in the flange end of the rod to avoid decarburization.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001441
EISBN: 978-1-62708-220-4
Abstract
Soft-soldered copper pipe joints used in refrigerating plants failed. The solder had not adhered uniformly to the pipe surface. In addition, there were some longitudinal grooves on the pipe surfaces, parts of which were not filled with solder. The unsoldered areas formed cavities within the joints, some of which had been in direct communication with the outsides via the grooves or interconnected cavities. On cooling, moisture condensed on the external surfaces. Some of this was drawn by capillary action into the cavities in open communication with the external surface. On continued cooling to below freezing-point, water that entered the cavities solidified. This was accompanied by a slight increase in volume, which collapsed the pipe walls. In the examples, the pipe ends had not been properly tinned. The solder used was found to be of the tin-antimony type, containing about 5% antimony, which is more difficult to use than the usual tin-lead alloys. The use of this particular type of solder was a contributory factor in the production of unsound joints in the samples examined.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
Abstract
This article discusses the classification of sliding bearings and describes the major groups of soft metal bearing materials: babbitts, copper-lead bearing alloys, bronze, and aluminum alloys. It provides a discussion on the methods for fluid-film lubrication in bearings. The article presents the variables of interest for a rotating shaft and the load-carrying capacity and surface roughness of bearings. Grooves and depressions are often provided in bearing surfaces to supply or feed lubricant to the load-carrying regions. The article explains the effect of contaminants in bearings and presents the steps for failure analysis of sliding bearings. It also reviews the factors responsible for bearing failure with examples.