Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 214
Nondestructive testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006851
EISBN: 978-1-62708-395-9
Abstract
Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional digital camera. It covers basic photographic principles and manipulation of settings that assist in producing high-quality images. The need for accurate photographic documentation in failure analysis is also presented.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089676
EISBN: 978-1-62708-224-2
Abstract
Chain link, a part of a mechanism for transferring hot or cold steel blooms into and out of a reheating furnace, broke after approximately four months of service. The link was cast from 2% Cr austenitic manganese steel and was subjected to repeated heating to temperatures of 455 to 595 deg C (850 to 1100 deg F). Examination included visual inspection, macrograph of a nital-etched specimen from an as-received chain link 1.85x, micrographs of a nital-etched specimen from an as-received chain link 100x/600x, normal microstructure of as-cast standard austenitic manganese steel 100x, micrograph of a nital-etched specimen that had been austenitized 20 min at 1095 deg C (2000 deg F) and air cooled 315x, and micrograph of the same specimen after annealing 68 h at 480 deg C (900 deg F) 1000x). Investigation supported the conclusions that the chain link failed in a brittle manner, because the austenitic manganese steel from which it was cast became embrittled after being reheated in the temperature range of 455 to 595 deg C (850 to 1100 deg F) for prolonged periods of time. The alloy was not suitable for this application, because of its metallurgical instability under service conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046160
EISBN: 978-1-62708-224-2
Abstract
A stepped drive axle (hardened and tempered resulfurized 4150 steel forging) used in a high-speed electric overhead crane (rated at 6800 kg, or 7 tons, and handling about 220 lifts/day with each lift averaging 3625 to 5440 kg, or 4 to 6 tons) broke after 15 months of service. Visual examination of the fracture surface revealed three fracture regions. The primary fracture occurred approximately 50 mm (2 in.) from the driven end of the large-diam keywayed section on the stepped axle and approximately 38 mm (1 in.) from one end of the keyway where the crane wheel was keyed to the axle. Macroscopic, microscopic, and chemical examination revealed composition that was basically within the normal range for 4150 steel. This evidence supports the conclusion that cracking initiated at a location approximately opposite the keyway, and final fracture was due to mixed ductile and brittle fracture. Axial shift of the crane wheel during operation, because of insufficient interference fit, was the major cause of fatigue cracking. Recommendations included redesigning the axle to increase the critical diameter from 140 to 150 mm (5.5 to 6 in.) and to add a narrow shoulder to keep the drive wheel from shifting during operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048060
EISBN: 978-1-62708-224-2
Abstract
The crane hook (rated for 13000 kg) failed in the threaded shank while lifting a load of 9072 kg. The metal in the hook was revealed by chemical analysis to be killed 1020 steel. It was disclosed by visual examination that the fracture had at the last thread on the shank and rough machining and chatter marks were evident on the threads. Beach marks that emanated from the thread-root locations on opposite sides of the fracture surface identified these locations to be the origins of the fracture. A medium-coarse slightly acicular structure was revealed by metallographic examination which indicated that the material was in the as-forged condition (which meant lower fatigue strength). The fracture was concluded to have occurred due to stress concentration in the root of the last thread. Normalizing of the crane hook after forging was suggested as a corrective measure. A stress-relief groove with a diam slightly smaller than the root diam was placed at the end of the thread and a large-radius fillet was machined at the change in diameter of the shank.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001463
EISBN: 978-1-62708-224-2
Abstract
The link which failed was a special long one connecting a grab chain to a swivel. It was made from En 14A steel and in continuous use for two years. On one of the fracture faces the chisel edge weld preparation was clearly visible and the crack progression markings present indicated failure was due to fatigue. Macro-etched cross sections showed a lack of penetration and fusion in the weld. Fatigue cracks developed and slowly progressed through the weld metal. Fracture occurred when the remaining area of sound metal was insufficient to support the load. Lack of penetration of this magnitude could be revealed by radiography or ultrasonics but it would be difficult to detect the presence of cracks in course of development from the defects. It would be more prudent to ensure that welded links of this type were free from internal cavities before being put into service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
Abstract
The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler metal were found during chemical analysis. It was revealed by examination of the ends of the failed cross member that a rotational force that had been applied on the cross member caused it to fracture near the sling body. It was concluded that brittle fracture at the weld was caused by overloading which was attributed to the misalignment of the sling during loading. Aluminum alloy 5183 or 5356 filler metal was recommended to be used to avoid brittle welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048102
EISBN: 978-1-62708-224-2
Abstract
A bridge wheel from a 272,160 kg stripper crane fractured in the web near the rim after one year of service. The wheel was forged from 1055 steel, and the tread, hub faces, and hub bore were machined. Beach marks indicative of fatigue at ten locations were revealed by macroscopic examination of the fracture surfaces. The surface of the web was heavily scaled and decarburized. A gross forging defect extending about 1.8 mm along the fracture surface was disclosed by examination of a micrograph of a section through one of the fatigue origins. Shallower forging defects were visible along the web surface. Fatigue cracking of the wheel was initiated at forging defects in the web. Replacement wheels were machined all over and were magnetic particle inspected to detect any cracks that could act as stress raisers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001196
EISBN: 978-1-62708-224-2
Abstract
A forged alloy steel arm of a lifting fork with an approximate cross section of 150 x 240 mm (5.92 x 9.45 in.) fractured after only a short service life on a lift truck. The fracture surface had the appearance of a fracture originating from a surface crack. Analysis (visual inspection, 200x micrographs, chemical analysis, and metallographic examination) supported the conclusion that the primary cause of the failure was the brittleness (lack of impact toughness) of the steel. The coarse bainitic microstructure was inadequate for the service application. The microstructure resulted from either improper heat treatment or no heat treatment after the forging operation. The surface cracks in the lifting-fork arm acted as starter notches (stress raisers), assisting in the initiation of fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0091092
EISBN: 978-1-62708-224-2
Abstract
A 60.3 mm (2.375 in.) diam drive shaft in the drive train of an overhead crane failed. The part submitted for examination was a principal drive shaft that fractured near a 90 deg fillet where the shaft had been machined down to 34.9 mm (1.375 in.) to serve as a wheel hub. A 9.5 mm (0.375 in.) wide x 3.2 mm (0.125 in.) deep keyway was machined into the entire length of the hub, ending approximately 1.6 mm (0.062 in.) away from the 90 deg fillet. A second shaft was also found to have cracked at a change in diameter, where it was machined down to serve as the motor drive hub. Investigation (visual inspection, inspection records review, optical and scanning electron microscopy, and fractography) supported the conclusion that the fracture mode for both shafts was low-cycle rotating-bending fatigue initiating and propagating by combined torsional and reverse bending stresses. Recommendations included replacing all drive shafts with new designs that eliminated the sharp 90 deg chamfers in favor of a more liberal chamfer, which would reduce the stress concentration in these areas.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089633
EISBN: 978-1-62708-220-4
Abstract
A stuffing box (sand cast from ASTM A 536, grade 60-45-10, ductile iron) began leaking water after two weeks of service. The machine was operating at 326 rpm with a discharge water pressure of 21.4 MPa (3100 psi). Investigation (visual inspection, mechanical analysis, and nital etched 100x magnification) supported the conclusion that the crack initiated at the inner edge of a lubrication hole and had propagated toward both the threaded and flange ends of the casting. An appreciable residual-stress concentration must have been present and caused propagation of the crack. The residual stress might have been caused when a fitting was tightly screwed into the lubrication hole, and it might have been concentrated by notches at the inner end of the hole created when the drill broke through the sidewall to the stuffing box.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
1