Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Sheet forming
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001216
EISBN: 978-1-62708-217-4
Abstract
Countersunk riveted joints in aluminum sheet are widely employed in the aircraft industry. The preparation of the sheet for the riveting process consists either of countersinking where the sheet is sufficiently thick or of dimpling. Metallographic assessment of dimple defects is described in specimens made of clad aluminum sheet of alloy type AlZnMgCu1.5. Addressed are a dimple with partially missing stamped surface (bell-mouth), a cylindrical prominence because the dimpling force was too great and the stamping cylinder force too low, and a dimple with flashes at the top surfaces of the sheet as a result of play between the stamping cylinder and the anvil head (ringed dimple). Frequently, overlapping of several defects occurs, especially with steel or titanium sheet, with the result that it is difficult to identify the defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001142
EISBN: 978-1-62708-228-0
Abstract
Several newly developed liquid propane gas (LPG) cylinders made from Fe-0.13C-0.42Mn steel failed, each fracturing in the longitudinal direction. One of the cylinders was thoroughly analyzed to determine the cause. Deep-drawing flaws were observed on the inner wall of the cylinder, oriented in the direction of the fracture and roughly equal in length. Flaws about 1.3 mm deep, steps, and a chevron pattern were observed on the fractured surface as were cleavage facets, revealed by SEM. Hardness was relatively high and the microstructure near the fracture surface appeared elongated. In addition, the stress intensity factor KI calculated from the value of the internal pressure was lower than that estimated by the fracture toughness test. All of this suggests that the tanks were not sufficiently annealed and prone to brittle fracture. The analysis thus proves that cracks initiated by deep-drawing flaws were the primary cause of failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048150
EISBN: 978-1-62708-235-8
Abstract
Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048787
EISBN: 978-1-62708-235-8
Abstract
Leakage from the top of a fire-extinguisher case, made of 1541 steel tubing and closed by spinning was observed during testing. Three small folds were observed on the surface by visual examination and one was sectioned. A very fine transverse fissure through the section was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation is done at a lower temperature to avoid formation of ferrite streaks.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001286
EISBN: 978-1-62708-215-0
Abstract
Failure of AISI 1015 steel brake discs used in power transmissions in emergency winches was investigated using various testing methods. The failed discs were stampings that had replaced cast discs. Residual stresses in the fillets of new cast and new stamped brake discs were measured by x-ray diffraction. The results indicated that the stamped brake discs had failed by fatigue caused by a tensile residual stress pattern in the fillet. The residual stress pattern was attributed to the change in manufacturing process from casting to stamping. Use of a manufacturing process that yields a compressive residual stress in the fillet, appropriate heat treatment of stamped discs, or redesign of the disc and/or transmission assembly was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001121
EISBN: 978-1-62708-214-3
Abstract
An AISI D2 tool steel insert from a forming die used in the manufacture of automotive components failed prematurely during production. Results of various analyses and simulation tests indicated fatigue failure resulting from improper heat treatment. The fatigue fracture originated because of a highly stressed condition produced by a sharp corner combined with low toughness from ineffective tempering. It was recommended that 25 other inserts that belonged to the same die be double tempered.