Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Rolling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0059924
EISBN: 978-1-62708-235-8
Abstract
The large steel ring produced for a nuclear application from a billet of 8822 steel was inspected. The large billet was first forged into a doughnut preform in a large press, and then formed into the ring by ring rolling. A straight-beam ultrasonic inspection was instituted and calibrated using the back-surface-reflection method to determine whether adequate ultrasonic penetration was available. Areas of indications were noted at approximately midheight and adjacent to the bore area. An axial angle-beam inspection from the outside was performed, mainly in the area of indications to reveal detectable indications. The indications were not considered serious enough to reject the forgings. A few small indications in the areas tested were revealed by magnetic particle inspection. The area was conditioned by grinding and polishing to obtain an additional inspection at a greater depth from the inside surface. A much more severe condition was revealed after the test. The indications were classified as areas of chemical segregation and nonmetallic inclusions. The ring was considered unsatisfactory for the application and replacement of the defective ring from an acceptable billet was the most economical solution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
Abstract
One percent Cr-Mo low alloy constructional steel is widely used for high tensile applications, e.g., for manufacture of high tensile fasteners, heat treated shafts and axles, for automobile applications such as track pins for high duty tracked vehicles etc. The steel is fairly through hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening of the surface. Indifferent results were obtained in induction hardening; cracks were noticed, and patchy hardness figures were obtained on the final product in several batches. Metallographic examination of transverse sections through the defective areas showed decarburization to varying degrees, i.e., from partial to total decarburization. Observations suggested the defects originated at the stages of ingot making and rolling. This was apparently the reason for complete decarburization of the area with original surface defect which opened up further in the oxidizing atmosphere of the furnace with low melting clinkers from scale and furnace lining filling up the crevice of the original defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001608
EISBN: 978-1-62708-236-5
Abstract
Investigation of alleged corrosion damage to hot-rolled steel during transit requires metallurgical, chemical, and corrosion knowledge. Familiarity with non-destructive techniques and sampling procedures is necessary. A complete record of shipment history is also required, including the purchasing specifications and observations and photographs taken during surveys enroute. A frequent conclusion of such investigations is that the alleged corrosion is of no significance or did not occur during the voyage.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001576
EISBN: 978-1-62708-219-8
Abstract
Macrofractographs of the fracture surface from a multibladed fan showed that cracks started at the corner where bending stress was concentrated and propagated through the blade by fatigue. Peak stress at the monitoring position was less than 10 MPa. To simulate crack growth, the rotor was repeatedly deformed by a hydraulic fatigue tester. Comparison of striations of the failed blade with that of the tested one revealed the failed blade was loaded with more than 30 MPa of stress. These tests confirmed that the rotor and blades had sufficient strength to withstand up to 3x the stress of normal operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0045909
EISBN: 978-1-62708-232-7
Abstract
A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished and etched and were found to be composed of ferrite and pearlite mixtures, as would be expected. However, the sample taken from a location about 75 mm (3 in.) from the hole contained a cluster of unusually large inclusions. By removing the beryllium window from in front of the detector, EPMA spectra were obtained from the inclusions and from the steel matrix. The inclusion spectrum contained primarily iron and oxygen, whereas the matrix spectrum contained primarily iron. X-ray maps were made to show the distribution of iron and oxygen. These results indicated that the inclusions were iron oxide. A similar inclusion at the failure site in the melting pot may have reacted violently with the molten magnesium, causing the leak.