Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Tube bending
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001000
EISBN: 978-1-62708-229-7
Abstract
Rupture occurred at a bend in a superheated steam transfer line between a header and a desuperheater of a boiler producing 230 t/h of steam at 540 deg C and 118 kPa. The boiler had operated for 77,000 h. Rupture occurred along the outer bend radius of the 168 mm diam tube, this being of 1 Cr, 0.5 Mo steel with a wall thickness of 14 mm. The design temperature of this tube was 490 deg C, but there is evidence that it was operating at a temperature much above 500 deg C. Metallographic analysis disclosed an advanced stage of creep damage accumulation in the form of local cracks, microcracks, and aligned damage centers which showed up as voids upon repeated polish-etch cycles. Because of the local nature of creep damage that can occur, any inspection that involves in situ metallography must be conducted at exactly the right or critical position or the presence of damage may not be detected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
Abstract
Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness of the shell wall itself. The boiler had been in operation for approximately 160,000 h and was shut down for inspection when the cracking was detected. The material involved was 2.25 Cr, 1 Mo steel, and the unit had been subjected to 115 shutdowns. Initiation of the cracks was attributed to thermal shock, caused by the periodic return of condensate along the long connecting line (some 9 m long). Propagation of the cracks was due to thermal cycling, together with periodic pressure cycles, producing growth by low cycle fatigue. This was aided by corrosion within the cracks and by the wedging action caused by corrosion deposits at their tips. The failure suggests control of dissolved solids in the boiler feedwater may have been inadequate.