Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Cutting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
Abstract
A section from a stop-block guide fell to the floor on a crane runway after it failed. A brittle crystalline-type break was disclosed by examination of the fracture surface. The point of initiation was in a hardened heat-affected layer that had developed during flame cutting and welding. The metal was identified to be 1020 steel. It was indicated by the coarse as-rolled structure (grain size of ASTM 00 to 4) of the base metal that the weldment (stop block and guide) had not been normalized. The brittle failure was evaluated to have been initiated at a metallurgical and mechanical notch produced by flame cutting and welding. As corrective measures, fully silicon-killed 1020 steel with a maximum grain size of ASTM 5 were used to make new stop-block weldments. The weldments were normalized at 900 deg C after flame cutting and welding to improve microstructure and impact strength. All flame-cut surfaces were ground to remove notches.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
Abstract
A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside radius of the hook. Beach marks (typical of fatigue fracture) were found extending over approximately 20% of the fracture surface. Numerous cracks were revealed by macroscopic examination of the torch-cut surfaces. It was revealed by macrograph of an etched specimen that the cracks had initiated in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil hooks were flame cut from ASTM A242 fine-grain steel plate, ground to remove the material damaged by flame cutting and stress relieved at 620 deg C.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048356
EISBN: 978-1-62708-229-7
Abstract
Welded to the top of a dust bin for rigid support, a furnace water-wall tube in a new stationary boiler broke at the welded joint shortly after start-up. The tubes measured 64 mm (2.5 in.) OD by 3.2 mm (0.125 in.) wall thickness and were made of carbon steel to ASME SA-226 specifications. Investigation supported the conclusion that a crevice-like undercut was likely the primary cause of the fracture and that the source of the necessary fluctuating stress was tube vibration inherent in boiler operation. Recommendations included magnetic-particle inspection of the remaining water-wall tubes in the row, replacing the broken tube, and repairing cracks in other tubes by welding.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
Abstract
The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched with 2% chromic acid plus HCl views) supported the conclusions that failure was by fatigue from multiple origins caused by welding defects. Ultimate failure was by tensile overload of the sections partly separated by the fatigue cracks. Recommendations included correct fit-up of the case, stiffener, and flange and more skillful welding techniques to avoid undercutting and unfused interfaces.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
Abstract
A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area, indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain over 1% C, higher than the carbon content of the base metal. The cracks in the drain groove surface could have occurred after arc gouging, during subsequent stress-relieving, or during the hydrostatic test. Flame cutting is not recommended for the type of steel used in the boiler drum because it can lead to local embrittlement and stress raisers, potentially initiating major failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
Abstract
To permit bolting of a 90 lb/yd. flat-bottomed rail to a steel structure, rectangular slots 2 in. wide x 1 in. deep were flame-cut in the base of the rail at 2 ft intervals to suit existing bolt holes. During subsequent handling, one of the rails (which were about 25 ft long) was dropped from a height of approximately 6 ft on to a concrete floor and it fractured into 11 pieces, each break occurring at a slot. The sample piece submitted for examination showed a wholly brittle fracture at each end, the fractures having originated at the sharp corners of the slots. During flame-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening. The steel in the regions of the slots possessed little capacity for deformation, and fracturing of the martensitic layer, under cooling or impact stresses, would be likely to occur. The slots should have been cut mechanically.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001188
EISBN: 978-1-62708-235-8
Abstract
A short fracture section of a forged and normalized Ck 35 (DIN 17200) steel slide showed three distinct zones: a dark colored crystalline area, an incipient crack propagating into a far advanced, rubbed fracture surface, and a fine crystalline final break. Metallographic examination showed the dark incipient crack was present before the last heat treatment and was oxidized and decarburized prior to the conclusion of the annealing process. The crack ran perpendicular to the fiber, so it was not formed before or during forging. It was a thermal stress crack produced during flame cutting of the middle section of the slide. The initial crack acted as a sharp notch favoring the formation of the fatigue fracture which lead to the failure of the slide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001015
EISBN: 978-1-62708-217-4
Abstract
A helicopter rapidly lost altitude and struck a tree, causing a fire and severe damage. The hose clamp which was the subject of this investigation was one of two used on a short length of hose between the turbocharger and the carburetion system. The purpose of this examination was to determine whether the hose failed during or before the accident. Fracture in the failed clamp was accompanied by obvious permanent deformation and evidence of local shearing at the ends of the perforation where fracture occurred, and in the adjacent perforation. The first test involved tightening the clamps to failure with a torque wrench. In no case did the band material fracture. In a second attempt to duplicate the failure, a tensile testing machine was used to pull the two fittings apart while the hose was clamped in place. When the testing machine was operated at maximum head travel (approximately 20 in. per min.), one of the hose clamps broke in the same manner as the clamp in question. The manner of failure during the tension test indicated this clamp failed at the time of the crash because of a sudden separation between the turbocharger and the remainder of the aircraft.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048120
EISBN: 978-1-62708-225-9
Abstract
The pawl spring which was part of a selector switch used in telephone equipment failed. The springs were blanked from 0.4 mm (0.014 in.) thick tempered 1095 steel and then nickel plated. Numerous pits around the rivet holes were revealed by microscopic examination of longitudinal specimens. Delaminations that were formed at inclusion sites during punching of the rivet holes and that were filled with nickel during the plating operation were revealed by microscopic examination of the rivet hole. These delaminations were interpreted to have acted as stress raisers and initiated the fracture. Long, narrow sulfide stringers which were the probably the cause of delamination in this spring material were revealed in the raw material used to make the springs. It was concluded that fracture of the springs was caused by fatigue that had originated at delaminations around the rivet holes.