Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 31
Machining
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
Abstract
The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed by metallographic examination. A microstructure of fine tempered martensite containing some carbide particles was exhibited by the core material away from the hole. Brittle fracture characteristics with beach marks were exhibited by the fracture surfaces which is characteristic of a torsional fatigue fracture. As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047964
EISBN: 978-1-62708-223-5
Abstract
Drastic reduction in the service life of a production gearbox was observed. Within the gearbox, the axial load on a bevel gear (8620 steel, OD 9.2 cm) was taken by a thrust-type roller bearing (3.8 cm ID, 5.6 cm OD) in which a ground surface on the back of the bevel gear served as a raceway. Spalling damage on the ground bearing raceway at five equally spaced zones was disclosed by inspection of the bevel gear. The bearing raceway was checked for runout by mounting the gear on an arbor. It was found that the raceway undulated to the extent of 0.008 mm total indicator reading and a spalled area was observed at each high point. The presence of numerous cracks that resembled grinding cracks was revealed both by magnetic-particle inspection and microscopic examination. Spalling was produced by nonuniform loading in conjunction with grinding cracks. As corrective measures, the spindle of the grinding machine was reconditioned to eliminate the undulations and retained austenite was minimized by careful heat treatment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001155
EISBN: 978-1-62708-223-5
Abstract
Milling machine arbors were inserted with satellite spindles having a maximum speed of 1500 rpm, and broke out between the groove and the flange. The appearance of the fracture surface was the same on both arbors. The pronounced scan lines characterized the fractures as fatigue fractures. The appearance of the fracture in the arbors indicated ductile fatigue fracture which had its origin in the radii between groove and flange. These radii of 0.15 and 0.2 mm were too small for the load on the milling machine. In addition there were grooves at the base of the radii which had an unfavorable effect on the life of the component by acting as notches with their resulting stress concentration. Considering the great hardness of the case, the small radii would have been critical even without grooves. Measures were taken so that the critical radius of the milling machine was increased and the surface roughness measured more precisely.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0091853
EISBN: 978-1-62708-223-5
Abstract
A 230 mm (9 in.) diameter disk attrition mill was scheduled to grind 6.35 mm (0.25 in.) diameter quartz particles to a 0.075 mm (0.003 in.) diameter powder. Due to severe wear on the grinding plates, however, the unit was unable to complete the task of grinding the rock. The mill consisted of a heavy gray cast iron frame, a gravity feeder port, a runner, and a heavy-duty motor. The frame and gravity feeder weighed over 200 kg (440 lb) and, in some areas, was over 25 mm (1 in.) thick. To obtain the operating speed of 200 rpm, a gear system was used to transmit the torque from the 2-hp motor. The runner consisted of a 50 mm (2 in.) diameter shaft and two gray cast iron grinding plates. Investigation (visual inspection, historical review, photographs, model testing of new plates, chemical analysis, hardness testing, optical macrographs, and optical micrographs) supported the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001539
EISBN: 978-1-62708-236-5
Abstract
Overhaul mechanics discovered a crack in an AISI 4340 Cr-Mo-Ni alloy steel pivot bolt when grinding off the chromium plating. The bolt had served for an estimated 10,000 h and was replated when last overhauled. On checking the bolt, several fine cracks were found on the surface. A 6500x micrograph revealed the intergranular nature of a crack. By trying different grinding procedures, investigators were able to reproduce this type of failure in the laboratory. It was concluded that grinding cracks initiated the failure. It should be noted that governing specifications prohibit grinding on high-strength steel; chromium should be stripped by electrochemical methods.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048356
EISBN: 978-1-62708-229-7
Abstract
Welded to the top of a dust bin for rigid support, a furnace water-wall tube in a new stationary boiler broke at the welded joint shortly after start-up. The tubes measured 64 mm (2.5 in.) OD by 3.2 mm (0.125 in.) wall thickness and were made of carbon steel to ASME SA-226 specifications. Investigation supported the conclusion that a crevice-like undercut was likely the primary cause of the fracture and that the source of the necessary fluctuating stress was tube vibration inherent in boiler operation. Recommendations included magnetic-particle inspection of the remaining water-wall tubes in the row, replacing the broken tube, and repairing cracks in other tubes by welding.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
Abstract
The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched with 2% chromic acid plus HCl views) supported the conclusions that failure was by fatigue from multiple origins caused by welding defects. Ultimate failure was by tensile overload of the sections partly separated by the fatigue cracks. Recommendations included correct fit-up of the case, stiffener, and flange and more skillful welding techniques to avoid undercutting and unfused interfaces.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
Abstract
A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area, indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain over 1% C, higher than the carbon content of the base metal. The cracks in the drain groove surface could have occurred after arc gouging, during subsequent stress-relieving, or during the hydrostatic test. Flame cutting is not recommended for the type of steel used in the boiler drum because it can lead to local embrittlement and stress raisers, potentially initiating major failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006409
EISBN: 978-1-62708-217-4
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
Abstract
A longeron assembly constructed of Alclad 2024, some parts being in the T3 condition, others in the T42 condition, failed at a rivet hole. Plastic deformation at the crack site was found, but no plastic deformation was found in similar failed components. It was concluded that the numerous hairline cracks in the Alclad layer adjacent to the main fracture were fatigue cracks. In another case, bonded samples of 2024-T3 sheet were fatigue tested at various stress levels. Failures could be separated into three groups: those that failed in the adhesive bond, those that failed in the base material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting microcracks between adjacent discontinuities supported a hydrogen blistering diagnosis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001015
EISBN: 978-1-62708-217-4
Abstract
A helicopter rapidly lost altitude and struck a tree, causing a fire and severe damage. The hose clamp which was the subject of this investigation was one of two used on a short length of hose between the turbocharger and the carburetion system. The purpose of this examination was to determine whether the hose failed during or before the accident. Fracture in the failed clamp was accompanied by obvious permanent deformation and evidence of local shearing at the ends of the perforation where fracture occurred, and in the adjacent perforation. The first test involved tightening the clamps to failure with a torque wrench. In no case did the band material fracture. In a second attempt to duplicate the failure, a tensile testing machine was used to pull the two fittings apart while the hose was clamped in place. When the testing machine was operated at maximum head travel (approximately 20 in. per min.), one of the hose clamps broke in the same manner as the clamp in question. The manner of failure during the tension test indicated this clamp failed at the time of the crash because of a sudden separation between the turbocharger and the remainder of the aircraft.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
Abstract
This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive heat generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines. Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
Abstract
To permit bolting of a 90 lb/yd. flat-bottomed rail to a steel structure, rectangular slots 2 in. wide x 1 in. deep were flame-cut in the base of the rail at 2 ft intervals to suit existing bolt holes. During subsequent handling, one of the rails (which were about 25 ft long) was dropped from a height of approximately 6 ft on to a concrete floor and it fractured into 11 pieces, each break occurring at a slot. The sample piece submitted for examination showed a wholly brittle fracture at each end, the fractures having originated at the sharp corners of the slots. During flame-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening. The steel in the regions of the slots possessed little capacity for deformation, and fracturing of the martensitic layer, under cooling or impact stresses, would be likely to occur. The slots should have been cut mechanically.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
Abstract
A section from a stop-block guide fell to the floor on a crane runway after it failed. A brittle crystalline-type break was disclosed by examination of the fracture surface. The point of initiation was in a hardened heat-affected layer that had developed during flame cutting and welding. The metal was identified to be 1020 steel. It was indicated by the coarse as-rolled structure (grain size of ASTM 00 to 4) of the base metal that the weldment (stop block and guide) had not been normalized. The brittle failure was evaluated to have been initiated at a metallurgical and mechanical notch produced by flame cutting and welding. As corrective measures, fully silicon-killed 1020 steel with a maximum grain size of ASTM 5 were used to make new stop-block weldments. The weldments were normalized at 900 deg C after flame cutting and welding to improve microstructure and impact strength. All flame-cut surfaces were ground to remove notches.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
Abstract
A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside radius of the hook. Beach marks (typical of fatigue fracture) were found extending over approximately 20% of the fracture surface. Numerous cracks were revealed by macroscopic examination of the torch-cut surfaces. It was revealed by macrograph of an etched specimen that the cracks had initiated in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil hooks were flame cut from ASTM A242 fine-grain steel plate, ground to remove the material damaged by flame cutting and stress relieved at 620 deg C.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048120
EISBN: 978-1-62708-225-9
Abstract
The pawl spring which was part of a selector switch used in telephone equipment failed. The springs were blanked from 0.4 mm (0.014 in.) thick tempered 1095 steel and then nickel plated. Numerous pits around the rivet holes were revealed by microscopic examination of longitudinal specimens. Delaminations that were formed at inclusion sites during punching of the rivet holes and that were filled with nickel during the plating operation were revealed by microscopic examination of the rivet hole. These delaminations were interpreted to have acted as stress raisers and initiated the fracture. Long, narrow sulfide stringers which were the probably the cause of delamination in this spring material were revealed in the raw material used to make the springs. It was concluded that fracture of the springs was caused by fatigue that had originated at delaminations around the rivet holes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
1