Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Directed-energy fusion welding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047720
EISBN: 978-1-62708-217-4
Abstract
Airfoil-shape impingement cooling tubes were fabricated of 0.25 mm (0.010 in.) thick Hastelloy X sheet stock, then pulse-laser-beam butt welded to cast Hastelloy X base plugs. Each weldment was then inserted through the base of a hollow cast turbine blade for a jet engine. The weldments were finally secured to the bases of the turbine blades by a brazing operation. One of the laser beam attachment welds broke after a 28-h engine test run. Exposure of the fracture surface for study under the electron microscope revealed the joint had broken in stress rupture. Failure was caused by tensile overload from stress concentration at the root of the laser beam weld, which was caused by the sharp notch created by the lack of full weld penetration. Radiographic inspection of all cooling-tube weldments was made mandatory, with rejection stipulated for joints containing subsurface weld-root notches. In addition, all turbine blades containing cooling-tube weldments were reprocessed by back-brazing. Back brazed turbine blades were reinstalled in the engine and withstood the full 150-h model test run without incident.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001505
EISBN: 978-1-62708-217-4
Abstract
A helicopter had just taken off when there was a loud bang and the engine started to overspeed. After landing and inspection, the transmission was disassembled. It was discovered that the assembly containing the output shaft to the main rotor had failed. The output shaft assembly was made up of two parts: the output shaft with an integral 10 in. diam upper disc at approximately mid-section; and a 10 in. diam lower disc. During manufacture, the lower disc was attached to the output shaft by an electron beam weld. The fracture had a single fatigue initiation site, coincident with the annular zone of remelted material on the inner surface of the disc. In the lower disc, the fracture was also 80% fatigue, but high stress, low cycle in nature and contained multiple initiation sites coincident with an electron beam weld bead. It was concluded that fatigue in the upper disc resulted from the presence of a metallurgical stress concentration caused by the electron weld beam impingement on the inner surface of the upper disc. An Airworthiness Directive was issued, and the manufacturer issued a mandatory service bulletin outlining a periodic inspection for the output shaft assembly.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047710
EISBN: 978-1-62708-225-9
Abstract
A 9310 steel gear was found to be defective after a period of engine service. A linear crack approximately was discovered by routine magnetic-particle inspection of an electron beam welded joint that attached a hollow stub shaft to the web of the gear. The welding procedure had a cosmetic weld pass on top of the initial full-penetration weld. There were no other known service failures of gears were welded by this method. One zone of the welded joint showed incomplete fusion, surrounded by two zones containing fatigue beach marks This indicated that the incomplete-fusion zone was the site at which primary fracture originated. The possible causes of incomplete-fusion include localized magnetic deflection of the electron beam, a momentary arc-out of the electron beam, and eccentricity in the small weld diam. The failure was attributed to fatigue originating at the local unfused interface of the electron beam weld, which had been the result of a deviation in the welding procedure. Examination of the possible causes of failure gave no evidence that a recurrence of the defect had ever occurred. Thus, there was no basis on which to recommend a change in design, material, or welding procedure.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.