Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-11 of 11
Butt welding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001443
EISBN: 978-1-62708-235-8
Abstract
Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present in this case could have been drawn without failure. Failure in service was due to overheating resulting from the inability of the conductor to carry the current where its cross section was reduced by the presence of a cavity. Another failure of a conductor occurred in one of the field coils of a direct-current motor. The mode of failure and the changes in the microstructure showed that fracture was due to a defective resistance butt-weld which had been made when the wire was in process of drawing. A further example of a conductor failure occurred in a 12 SWG copper connection between the rotor contactor and the resistance in a starter. A transverse section through the zone of failure showed an oxide layer extended almost completely across the plane of a weld, and also the grain growth that had occurred in this region.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001475
EISBN: 978-1-62708-234-1
Abstract
During periodic inspection of the tubes of a reformer furnace, a soapy water leak test with the tubes pressurized with nitrogen was being carried out by site personnel in a manner contrary to the policy of the organization when one of the tubes suddenly disintegrated with explosive violence. The tube approximately 30 ft. long by 6 in. diam, was constructed of three spun cast sections butt welded together. The material specified for tubes for this service was basically a 25% chromium, 20% nickel, cast stainless steel containing 0.4% carbon to optimize creep resistance. Failure initiated in the region of the tube where the dark fracture surface and columnar grain structure were evident. These features indicated the presence of a defective zone or progressive cracking which had occurred during service. Microscopic examination of sections through the zone revealed extensive creep cracking. The cracking was intergranular and followed the interdendritic columnar structure adjacent to the outer surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001426
EISBN: 978-1-62708-224-2
Abstract
Following three similar failures of load chains on manually operated geared pulley-blocks of 1-ton capacity, a portion of one of the chains was obtained for examination. The chain was made of mild steel and the links had been electrically butt-welded at one side. In the case of the sample obtained, the failure in service had resulted from fracture of one of the links in the plane of the weld. Six of the other links in the vicinity showed cracks in the welds in various stages of development. Microscope examination showed a crack in an early stage of development and also from an apparently sound link, the prepared surfaces lying in the planes of the links. This examination revealed that the welds were initially defective. Discontinuities were present in both cases adjacent to the insides of the links, of a type indicative of either inadequate fusion or incomplete expulsion of oxide, etc., at the time of the upset, i.e. the pressing together of the ends of the links to complete the welding. It was evident from the examination that the service failures were due to the use of chain that was initially defective.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001462
EISBN: 978-1-62708-224-2
Abstract
Failure occurred by fatigue cracking of links from chains which were used to replace the ropes on grabs of the multirope type. In the first example, the links were made from high tensile steel rod. The fracture in the side of the link was duplex in appearance one half of the surface being discolored, indicative of a preexisting crack of the fatigue type, whilst the remaining portion was brightly crystalline, resulting from brittle fracture at the time of the mishap. In the second example, the fracture took place at a similar location adjacent to one of the butt welds situated at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001407
EISBN: 978-1-62708-220-4
Abstract
The onset of leakage adjacent to two butt welds in a 2 in. bore pipe was traced to the development of fine cracks. The pipe carried 40% sodium hydroxide solution. The actual temperature was not known, but the pipeline was steam traced at a pressure of 30 psi, equivalent to a temperature of 130 deg C (266 deg F). Magnetic crack detection revealed circumferential crack-like indications situated a short distance from the butt weld. Cracking originated on the bore surfaces of the tube and was of an intergranular nature reminiscent of caustic cracking in steam boilers. The strength of the solution of caustic soda and possibly the temperature also were in the range known to produce stress-corrosion cracking of mild steels in the presence of stresses of sufficient magnitude. In this instance the location of the cracking suggested that residual stresses from welding, which approach yield point magnitude, were responsible. As all other welds were suspect, the remedy was to remove the joints and to reweld followed by local stress relief.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001735
EISBN: 978-1-62708-220-4
Abstract
A sample tube was removed from a reformer furnace for life assessment after 69,000 h of service. Sections were cut from the tube, which was a spindle cast A297 Grade HK 40 (25 Cr, 20 Ni, 0.4 C) austenitic steel of 122.5 mm OD and 10.5 mm nominal wall thickness. They were examined metallographically on transverse sections and on longitudinal sections through the butt welds joining the separate cast segments of the tube. Creep damage was mainly concentrated within the inner one third of the wall thickness. The use of damage assessment parameters in evaluating the reformer tube remaining life showed the welds to be inadequate, and to have a strength and creep resistance below those of the base metal.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
Abstract
A weld in a fuel-line tube broke after 159 h of engine testing. The 6.4-mm (0.25-in.) OD x 0.7-mm (0.028-in.) wall thickness tube and the end adapters were all of type 347 stainless steel. The butt joints between tube and end adapters were made by automated gas tungsten arc (orbital arc) welding. It was found that the tube had failed in the HAZ. Examination of a plastic replica of the fracture surface in a transmission electron microscope established that the crack origin was at the outer surface of the tube. The crack growth was by fatigue; closely spaced fatigue striations were found near the origin, and more widely spaced striations near the inner surface. The quality of the weld and the chemical composition of the tube both conformed to the specifications. However, the fuel-line assembly had vibrated excessively in service. The fuel-line fracture was caused by fatigue induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
Abstract
Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained during gas tungsten arc welding. Tests demonstrated the presence of sensitization in the HAZ of the gas tungsten arc weld. The aircraft engine tailpipe failures were due to intergranular corrosion in service of the sensitized structure of the HAZs produced during gas tungsten arc welding. All gas tungsten arc welded tailpipes should be postweld annealed by re-solution treatment to redissolve all particles of carbide in the HAZ. Also, it was suggested that resistance seam welding be used, because there would be no corrosion problem with the faster cooling rate characteristic of this technique.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.