Skip Nav Destination
Close Modal
By
W.L. Daugherty, G.R. Cannell
By
John W. Simmons
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Gas tungsten arc welding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Analysis of Porosity Associated with Hanford 3013 Outer Container Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
Abstract
An unacceptable degree of porosity was identified in several closure welds on stainless steel containers for plutonium-bearing materials. The pores developed in the weld tie-in region due to gas trapped by the weld pool during the closure process. This paper describes the efforts to trace the root cause of the porosity to the geometric conditions of the weld joint and establish corrective actions to minimize such porosity.
Book Chapter
On-Site Nondestructive Metallographic Examination of Materials
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
Abstract
Nondestructive metallographic examination of materials frequently must be performed on-site when the component in question cannot be moved or destructively examined. Often, it is imperative that specific microstructural information (i.e., material type, heat treatment condition, homogeneity, etc.) be obtained either before initial use of a component, or before the use of a component can be safely resumed. In this paper, the use of standard metallurgical laboratory equipment, and the procedures required to conduct nondestructive on-site metallographic analyses of engineering materials, is presented. As an example, the materials and metallographic techniques employed in an actual on-site investigation of a gas tungsten-arc weldment joining two large diameter Ti-6Al-4V alloy cylinders are discussed in depth to illustrate what can be accomplished.
Book Chapter
Fracture of Welds in a Pressure Vessel Because of Atmospheric Contamination
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
Abstract
A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding for the exterior surface of the weld. A segmented backup ring with a gas channel was used inside the vessel to shield the weld root. The pressure vessel failed due to contamination of the fusion zone by oxygen, which resulted when the gas shielding the root face of the weld was diluted by air that leaked into the gas channel. Thermal stresses cracked the embrittled weld, exposing the crack surfaces to oxidation before cooling. One of these cracks caused a stress concentration so severe that failure of the vessel wall during the proof test was inevitable. A sealing system at the split-line region of the segmented backup ring was provided, and a fine-mesh stainless steel screen diffuser was incorporated in the channel section of the backup ring to prevent air from leaking in. A titanium alloy color chart was furnished to permit correlation of weld-zone discoloration with the degree of atmospheric contamination.
Book Chapter
Weld Cracking of a Stainless Steel Heat Exchanger
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
Abstract
A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x images etched with Vilella's reagent followed by electrolytic etching in 10% oxalic acid) supported the conclusion that the heat exchanger cracked due to weld cold cracking or postwelding brittle overload that occurred via flexure during fabrication. The brittle nature of the weld was likely due to a combination of high residual stresses, a mixed microstructure, inclusions, and gross grain coarsening. These synergistic factors resulted from extreme heat input during fillet welding. Recommendations included altering the welding variables such as current, voltage, and travel speed to substantially reduce the heat input.
Book Chapter
Embrittlement of Stainless Steel by Liquid Copper From a Welding Fixture
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
Abstract
Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area of the HAZ on each side of the weld but did not extend under the tungsten arc. In SEM examination, the cracks appeared to be intergranular and extended to a depth of approximately 1.3 mm (0.05 in.). The crack appearance suggested that the surface temperature of the HAZ could have melted a film of copper on the fixture surface and that this could have penetrated the stainless steel in the presence of tensile thermal-contraction stresses. The cracks in the weldments were a form of liquid-metal embrittlement caused by contact with superficially melted copper from the fixture and subsequent grain-boundary attack of the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered.
Book Chapter
Corrosion Failure of Stainless Steel in Sensitized HAZ of Assembly Weld
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
Abstract
Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained during gas tungsten arc welding. Tests demonstrated the presence of sensitization in the HAZ of the gas tungsten arc weld. The aircraft engine tailpipe failures were due to intergranular corrosion in service of the sensitized structure of the HAZs produced during gas tungsten arc welding. All gas tungsten arc welded tailpipes should be postweld annealed by re-solution treatment to redissolve all particles of carbide in the HAZ. Also, it was suggested that resistance seam welding be used, because there would be no corrosion problem with the faster cooling rate characteristic of this technique.
Book Chapter
Failure of an Oil-Line Subassembly Because of Poor Welding
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
Abstract
Several elbow subassemblies comprising segments of oil-line assemblies that recycled aircraft-engine oil from pump to filter broke in service. The components of the subassemblies were made of aluminum alloy 6061-T6. Two subassemblies were returned to the laboratory to determine cause of failure. In one, the threaded boss had separated from the elbow at the weld. In the other, the failure was by fracture of the elbow near the flange. The separation of the threaded boss from the elbow was due to a poor welding procedure. Crack propagation was accelerated by fatigue caused by cyclic service stresses. The fracture of the second elbow near the flange was caused by overaging during repair welding of the boss weld. Satisfactory weld penetration was achieved by improved training of the welders plus more careful inspection. Repair welding was prohibited, to avoid recurrence of overaging from the welding heat. Additional support for the oil line was installed to reduce vibration and minimize fatigue of the elbow.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.