Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 31
Optical light microscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001247
EISBN: 978-1-62708-228-0
Abstract
Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together with nickel to a lesser extent. Local thinning, cavitation, and ductile deformation markings associated with the unmatched sample taken from the center of the fire showed the tube ruptured as a result of overheating. Overheating while the temperature recorder was off the chart caused severe loss of tube strength, resulting in ductile rupture. The minimum overheating temperature could be deduced at around 1200 deg F due to the presence of a eutectic observed metallographically within the surface corrosion products.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
Abstract
A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor the roll mileage was reported, but about 300 days had elapsed between the date of manufacture and the date the wheel was removed from service. The analysis (visual inspection, macrographs, micrographs, electron microprobe) supported the conclusions that the wheel half failed by fatigue. The fatigue crack originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0049838
EISBN: 978-1-62708-222-8
Abstract
An electron probe microanalyzer was applied to the study of service failures (due to severe heating) of aluminum wire connections in residential electrical circuits. Perturbed regions in which the composition underwent a change during the failure were revealed by optical and scanning electron microscopy of the contacts. A sequence of iron-aluminum compositions that shift from the pure aluminum of the wire to the nearly pure iron of the screw was revealed by analyses of two distinct layers formed on the aluminum/iron region. The compositions were found to correspond to specific intermetallic compounds found in the aluminum-iron phase diagram. Similar compositional variations were noted at the aluminum/brass interface. It was concluded that the failure of the electrical junction due to extreme heating was related to the formation of intermetallic compounds at the current carrying interfaces. These intermetallics were established to have a high resistance causing significant resistive heating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001421
EISBN: 978-1-62708-235-8
Abstract
The bottom flange of a vertical pipe coupled to an isolating valve in a steam supply line to a turbine failed. Steam pressure was 1,500 psi and the temperature 416 deg C (780 deg F). Multiple cracking occurred in the bore of the flange. A quarter-segment was cut out and examined. The cracks were located in the part of the flange that formed a continuation of the pipe bore. The majority of them originated at the end of the flange bore and extended axially along the pipe and radially across the flange face. Magnetic crack detection revealed a further number of cracks in the weld deposit. While the fracture in the weld metal was of the ductile type exhibiting a fine fibrous appearance, that in the flange material was of the cleavage type. Microscopic examination revealed that the cracks were blunt-ended fissures of the type characteristic of corrosion-fatigue. It was concluded that cracking was due to corrosion-fatigue, which arose from the combined effect of a fluctuating tensile stress in the presence of a mildly corrosive environment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001561
EISBN: 978-1-62708-229-7
Abstract
An intergranular stress-corrosion cracking failure of 304 stainless steel pipe in 2000 ppm B as H3BO3 + H2O at 100 deg C was investigated. Constant extension rate testing produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl-, O2 and MnS are discussed. Results indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001658
EISBN: 978-1-62708-229-7
Abstract
The intermediate pressure (IP) turbine of a thermal generating station is driven by steam from the boiler's reheater. On one particular IP turbine, a thick deposit was found on the insides of the rotor blade shrouds in two instances two years apart. The source of the deposits was not known; bulk chemical analysis had simply shown that iron was a major component. Optical microscopy and electron microprobe analysis were used to identify the deposits. In the first instance, the deposit was found to be debris that was left in the reheater tubes during boiler modification and swept to the turbine by the steam. There were still some of these debris particles present when the incident two years later was investigated but generally the second deposit was found to be of two layer oxide particles which were shown to have spalled from 2-14% chromium reheater tube surfaces.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001456
EISBN: 978-1-62708-229-7
Abstract
An unusual type of defect was discovered during hydraulic testing of a water-tube boiler after repairs to the superheater tubes following erosion from soot-blowers. When the pressure reached 700 psi, slight leakage was found to be taking place from one of the superheater tubes in a region where there appeared to be a split, approximately 8 in. long. What was thought to be a split was actually a pronounced fold. Microscopic examination showed that a corrosion-fatigue fissure had developed from one of the inside corners of the fold, presumably as a result of the fluctuating bending stresses to which this portion of the tube would be subjected because of the discontinuity in the tube wall. It was from this fissure that the leakage occurred. It was evident that the defect developed during the manufacture of the tube, probably in the course of a drawing or rolling operation without an internal plug. The diam of this portion of the tube was reduced by local collapse and folding of the section rather than by longitudinal extension of the tube itself.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001663
EISBN: 978-1-62708-236-5
Abstract
Personnel responsible for laboratory protection at some plants are required to participate in exercises simulating a breach of security at the site. This document reports a metallurgical investigation of blank firing adapters (BFA), one of which exploded during such a training exercise. Determination of the cause of the explosion was the primary objective of the examination. Metallographic studies included the examination of BFAs fabricated from two different types of alloys that were tested for shock reaction. Optical microscopy supported by electron microscopy and analytical methods were used. Our investigation supports the supposition that a live round of ammunition was inadvertently fired.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047144
EISBN: 978-1-62708-235-8
Abstract
During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel was exceeded, and failure through the wall occurred because of the following reason: the high level of iron oxide found is highly abnormal in vacuum-degassed steels. Included matter of this nature (exogenous) most likely resulted from scale worked into the surface during forging. Therefore, it is understandable that failure occurred during autofrettage when the section containing these defects was subjected to plastic strains. Because the inclusions were sizable, hard, and extremely irregular, this region would effect substantial stress concentration. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
Abstract
A two-section extension ladder, made from 6061-T6 aluminum alloy extrusions and stampings that were riveted together at each rung location and at the ends of side rails, broke in service after having been used at the sites of several fires by the fire department of a large city. The fracture surfaces were examined visually and by optical (light) stereomicroscopy. Material testing showed a sample to be within the specified material limits for aluminum alloy 6061. Microscopic examination showed no significant differences in microstructure or grain size among the four T-sections, and thickness measurements at various locations indicated that thicknesses were well within standard industry tolerances for aluminum extrusions in this size range. However, hardness testing of the four T-sections showed that in two, hardness was considerably lower than the acceptable hardness for the T6 temper and were within the range for 6061-T4 (acceptable hardness, 19 to 45 HRB). This indicated they had been naturally aged at room temperature after solution heat treatment instead of artificially aged as per specs. Edge cracking in two of the T-sections was the result of improper conditions during extrusion of the T-sections; however, this condition was not a primary cause of failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047192
EISBN: 978-1-62708-235-8
Abstract
Fracture of a cadmium-plated accumulator ring forged from 4140 steel was discovered during inspection and disassembly of a hydraulic-accumulator system stored at a depot. The ring had broken into five small and two large segments. The small segments of the broken ring displayed very flat fracture surfaces with no apparent yielding, but the two large segments did show evidence of bending (yielding) near the fractures. In addition, some segments contained fine radial cracks. Analysis (visual inspection, optical microscopy on polished-and-etched specimens, hardness testing, and chemical analysis) supported the conclusion that the failure was caused due to brittle fatigue, as evidenced by the intergranular nature of the fracture path. Also, hydrogen penetration occurred during the plating operation and was not relieved subsequently as required.
1