Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Solid-state welding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
Abstract
The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway displays a lack of fusion at the bottom corner. Fatigue fracture of the shaft resulted from stresses that were created by vibration acting on a crack or cracks formed in the weld deposit because of the lack of preheating and postheating. Rebuilding of exciter shafts should be discontinued, and the support plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047817
EISBN: 978-1-62708-233-4
Abstract
A pushrod made by inertia welding two rough bored pieces of bar stock installed in a mud pump fractured after two weeks in service. The flange portion was made of 94B17 steel, and the shaft was made of 8620 steel. It was disclosed by visual examination that the fracture occurred in the shaft portion at the intersection of a 1.3 cm thick wall and a tapered surface at the bottom of the hole. The fatigue crack was influenced by one-way bending stresses initiated at the inner surface and progressed around the entire inner circumference. A heavily decarburized layer was detected on the inner surface of the flange portion and sharp corner was found at the intersection of the sidewall and bottom of the hole. It was concluded that the stress raiser due to the abrupt section change was accentuated by decarburized layer. As a corrective measure, the design of the pushrod was changed to a one-piece forging and circulation of atmosphere during heat treatment was permitted through a hole drilled in the flange end of the rod to avoid decarburization.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
Abstract
After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached to the shaft. A circumferential crack in the main shaft at an abrupt change in shaft diam just below the upper radial bearing was revealed by visual examination. The smaller end of the shaft was found to be slightly eccentric with the remainder when the shaft was set up in a lathe to machine out the crack for repair welding. The crack was opened by striking the small end of the shaft and the shaft was broken 1.3 cm away from the crack in the process. A previous fracture that resulted from torsional loading acting along a plane of maximum shear was revealed almost perpendicular to the axis of the shaft. Faint lines parallel to the visible crack thought to be fatigue cracks were revealed on examination of the machined surface. The shaft was repaired by welding a new section and machined to required diameters and tapers to avoid abrupt changes.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.