Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 106
Joining
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001442
EISBN: 978-1-62708-221-1
Abstract
The impeller of a 4 ft. diam extraction fan driven by a 120 hp motor at 1,480 rpm. disrupted suddenly. The majority of the vanes had become detached where they were welded to the plates. At other locations, separation of the vanes was accompanied by tearing of the adjacent plate, failure being initiated at the weld fillets of the inner end of the vanes. An unusual feature was that the blades disclosed regions having a pronounced striated and stepped appearance. The etched microstructure was typical of a low carbon rolled plate having the usual banded appearance. A cross section through the fillet welds and zone showed lamellar tearing, which confirmed that failure had occurred in weld metal adjacent to the fusion face of the fillet to the vane. Results of the investigation indicated that the primary cause of failure of the impeller was the development of fatigue cracks from the unwelded roots of the fillet welds, by which the vanes were attached to the supporting plates. The impeller would have shown increased resistance to fatigue crack initiation if the T joint between the vanes and plates had been of the full penetration type.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001139
EISBN: 978-1-62708-221-1
Abstract
A truck-mounted hydraulic crane had a horizontal thrust bearing with one race attached to the truck and the other to the rotating crane. The outside race of the bearing was driven by a pinion gear, and it is through this mechanism that the crane body rotated about a vertical axis. The manufacturer welded the inner race to the carrier in a single pass. After several years of service, the attachment weld between the bearing inner race and the turntable failed in the area adjacent to the heat-affected zone. The fracture zone where there was the greatest tension was heavily oxidized. In the zone where the bearing was in compression, there was a clean surface indicating recent fracture. Finally, there were areas where the weld did not meet AWS specifications for convexity or concavity. These areas were weak enough to allow fatigue cracks to initiate. Recommendations to prevent reoccurrence of the failure include the use of bolts in lieu of welding, a welding schedule that reduces the propensity of lamellar tearing, and the use of an alloy that precludes lamellar tearing. However, if abuse of the crane was the primary cause of failure, none of these recommendations would have prevented deterioration of the machine to an extent that would have rendered the failure improbable.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
Abstract
A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047710
EISBN: 978-1-62708-225-9
Abstract
A 9310 steel gear was found to be defective after a period of engine service. A linear crack approximately was discovered by routine magnetic-particle inspection of an electron beam welded joint that attached a hollow stub shaft to the web of the gear. The welding procedure had a cosmetic weld pass on top of the initial full-penetration weld. There were no other known service failures of gears were welded by this method. One zone of the welded joint showed incomplete fusion, surrounded by two zones containing fatigue beach marks This indicated that the incomplete-fusion zone was the site at which primary fracture originated. The possible causes of incomplete-fusion include localized magnetic deflection of the electron beam, a momentary arc-out of the electron beam, and eccentricity in the small weld diam. The failure was attributed to fatigue originating at the local unfused interface of the electron beam weld, which had been the result of a deviation in the welding procedure. Examination of the possible causes of failure gave no evidence that a recurrence of the defect had ever occurred. Thus, there was no basis on which to recommend a change in design, material, or welding procedure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047935
EISBN: 978-1-62708-225-9
Abstract
Ball bearings made of type 440C stainless steel hardened to 60 HRC and suspected as the source of intermittent noise in an office machine were examined. A number of spots on the inner-ring raceway were revealed by scanning electron microscopy. The metal in the area around the spot was evidenced to have been melted and welded to the inner-ring raceway. It was revealed by randomly spaced welded areas on the raceways that the welding was the result of short electrical discharges between the bearing raceways and the balls. The use of an electrically nonconductive lubricant in the bearings was suspected to have caused the electric discharge by accumulation and discharge of static charge. The electrical resistance between the rotor and the motor frame lubricated with electrically conductive grease and the grease used in the current case was measured and compared to confirm the fact the currently used grease was nonconductive. It was concluded that the pits were formed by momentary welding between the ball and ring surfaces. The lubricant was replaced by electrically conductive grease as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001402
EISBN: 978-1-62708-220-4
Abstract
Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied at these and several other corresponding locations. Cracks visible on the external surface developed from the inside in a region close to the toe of the internal fillet weld to the deflector plate, and another deep crack associated with a weld cavity is visible slightly to the right of the main fissure. Microscopic examination revealed that precipitation of carbides at the grain boundaries had taken place in the vicinity of the cracks, but that the paths of the cracks were not wholly intergranular. Conditions present in the vicinity of the internal fillet weld must have been such as to favor both inter- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001407
EISBN: 978-1-62708-220-4
Abstract
The onset of leakage adjacent to two butt welds in a 2 in. bore pipe was traced to the development of fine cracks. The pipe carried 40% sodium hydroxide solution. The actual temperature was not known, but the pipeline was steam traced at a pressure of 30 psi, equivalent to a temperature of 130 deg C (266 deg F). Magnetic crack detection revealed circumferential crack-like indications situated a short distance from the butt weld. Cracking originated on the bore surfaces of the tube and was of an intergranular nature reminiscent of caustic cracking in steam boilers. The strength of the solution of caustic soda and possibly the temperature also were in the range known to produce stress-corrosion cracking of mild steels in the presence of stresses of sufficient magnitude. In this instance the location of the cracking suggested that residual stresses from welding, which approach yield point magnitude, were responsible. As all other welds were suspect, the remedy was to remove the joints and to reweld followed by local stress relief.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001735
EISBN: 978-1-62708-220-4
Abstract
A sample tube was removed from a reformer furnace for life assessment after 69,000 h of service. Sections were cut from the tube, which was a spindle cast A297 Grade HK 40 (25 Cr, 20 Ni, 0.4 C) austenitic steel of 122.5 mm OD and 10.5 mm nominal wall thickness. They were examined metallographically on transverse sections and on longitudinal sections through the butt welds joining the separate cast segments of the tube. Creep damage was mainly concentrated within the inner one third of the wall thickness. The use of damage assessment parameters in evaluating the reformer tube remaining life showed the welds to be inadequate, and to have a strength and creep resistance below those of the base metal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001441
EISBN: 978-1-62708-220-4
Abstract
Soft-soldered copper pipe joints used in refrigerating plants failed. The solder had not adhered uniformly to the pipe surface. In addition, there were some longitudinal grooves on the pipe surfaces, parts of which were not filled with solder. The unsoldered areas formed cavities within the joints, some of which had been in direct communication with the outsides via the grooves or interconnected cavities. On cooling, moisture condensed on the external surfaces. Some of this was drawn by capillary action into the cavities in open communication with the external surface. On continued cooling to below freezing-point, water that entered the cavities solidified. This was accompanied by a slight increase in volume, which collapsed the pipe walls. In the examples, the pipe ends had not been properly tinned. The solder used was found to be of the tin-antimony type, containing about 5% antimony, which is more difficult to use than the usual tin-lead alloys. The use of this particular type of solder was a contributory factor in the production of unsound joints in the samples examined.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
Abstract
The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler metal were found during chemical analysis. It was revealed by examination of the ends of the failed cross member that a rotational force that had been applied on the cross member caused it to fracture near the sling body. It was concluded that brittle fracture at the weld was caused by overloading which was attributed to the misalignment of the sling during loading. Aluminum alloy 5183 or 5356 filler metal was recommended to be used to avoid brittle welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048048
EISBN: 978-1-62708-224-2
Abstract
A resistance-welded chain link made from 16 mm diam 4615 steel failed while lowering a 9070 kg load of billets into a rail car after being in service for 13 months. Beach marks, typical of fatigue were found to have originated at the inside of the link which broke at the weld. Cracks in the weld zone (up to 1.2 mm deep) were revealed during metallographic examination of a section through the fracture surface. The cracks were filled with scale which indicated that they had formed during resistance welding of the link. The defect was thus attributed to the weld defects which initiated the fatigue failure by acting as stress raisers. The welding method was changed by the manufacturer and all chains were replaced with defect free chains.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001426
EISBN: 978-1-62708-224-2
Abstract
Following three similar failures of load chains on manually operated geared pulley-blocks of 1-ton capacity, a portion of one of the chains was obtained for examination. The chain was made of mild steel and the links had been electrically butt-welded at one side. In the case of the sample obtained, the failure in service had resulted from fracture of one of the links in the plane of the weld. Six of the other links in the vicinity showed cracks in the welds in various stages of development. Microscope examination showed a crack in an early stage of development and also from an apparently sound link, the prepared surfaces lying in the planes of the links. This examination revealed that the welds were initially defective. Discontinuities were present in both cases adjacent to the insides of the links, of a type indicative of either inadequate fusion or incomplete expulsion of oxide, etc., at the time of the upset, i.e. the pressing together of the ends of the links to complete the welding. It was evident from the examination that the service failures were due to the use of chain that was initially defective.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001438
EISBN: 978-1-62708-224-2
Abstract
A crane hook of 200T rated capacity failed suddenly at an indicated load of 143T, while the crane was undergoing a load test. Fracture took place through the intrados of the hook at the region of maximum stress. The jib and other portions suffered subsequent damage following the sudden release of the load. Fracture was wholly of the brittle cleavage type except for a small crescent shaped lip at the top right-hand side. In this zone, fracture occurred at an angle of 45 deg to the general plane of fracture, indicative of failure in shear. Failure of the hook had taken place where a deposit of weld metal had been made, probably to eliminate a surface defect but apparently, without complete removal of the defect down to sound metal prior to welding. On many occasions it is preferable to blend out surface defects by local dressing. The effect of the resulting loss of strength is insignificant compared with the increased chance of failure associated with a weld repair.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001462
EISBN: 978-1-62708-224-2
Abstract
Failure occurred by fatigue cracking of links from chains which were used to replace the ropes on grabs of the multirope type. In the first example, the links were made from high tensile steel rod. The fracture in the side of the link was duplex in appearance one half of the surface being discolored, indicative of a preexisting crack of the fatigue type, whilst the remaining portion was brightly crystalline, resulting from brittle fracture at the time of the mishap. In the second example, the fracture took place at a similar location adjacent to one of the butt welds situated at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
Abstract
A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding for the exterior surface of the weld. A segmented backup ring with a gas channel was used inside the vessel to shield the weld root. The pressure vessel failed due to contamination of the fusion zone by oxygen, which resulted when the gas shielding the root face of the weld was diluted by air that leaked into the gas channel. Thermal stresses cracked the embrittled weld, exposing the crack surfaces to oxidation before cooling. One of these cracks caused a stress concentration so severe that failure of the vessel wall during the proof test was inevitable. A sealing system at the split-line region of the segmented backup ring was provided, and a fine-mesh stainless steel screen diffuser was incorporated in the channel section of the backup ring to prevent air from leaking in. A titanium alloy color chart was furnished to permit correlation of weld-zone discoloration with the degree of atmospheric contamination.
1