Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Carbonitriding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Book Chapter
Fatigue Fracture of an 8617 Steel Pilot-Valve Bushing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
Abstract
A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case hardened to a depth of 0.13 to 0.4 mm (0.005 to 0.015 in.) by carbonitriding. Specifications required that the part be carbonitrided, cooled, rehardened by quenching from 790 deg C (1450 deg F), then tempered at about 175 deg C (350 deg F). Visual examination, hardness testing, and metallographic and microstructural investigation supported the conclusion that the bushing fractured in fatigue because of a highly stressed case-hardened surface of unsatisfactory microstructure and subsurface nonmetallic inclusions. Cracks initiated at the highly stressed surface and propagated across the section as a result of cyclic loading. The precise cause of the unsatisfactory microstructure of the carbonitrided case could not be determined, but it was apparent that heat-treating specifications had not been closely followed. Recommendations included that inspection procedures be modified to avoid the use of steel containing nonmetallic stringer inclusions and that specifications for carbonitriding, hardening, and tempering be rigorously observed.