Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Electron microscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
Abstract
The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001494
EISBN: 978-1-62708-235-8
Abstract
Diode leads that were to be made from OFHC copper were instead made from copper with high oxygen content. The leads had a nickel underplating, a gold final plating, and were brazed to the diode package in a hydrogen atmosphere. After brazing, the leads became embrittled. SEM examination of the fractured leads revealed voids and some oxidized areas surrounded by ductile fracture areas. High pressure steam pockets observed as voids in the microstructure caused hydrogen embrittlement of the leads. The obvious corrective action was to ensure that the lead material was OFHC copper.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
Abstract
The U-0.8wt%Ti alloy is often used in weapon applications where high strength and fairly good ductility are necessary. Components are immersion quenched in water from the gamma phase to produce a martensitic structure that is amenable to aging. Undesirable conditions occur when a component occasionally cracks during the quenching process, and when tensile specimens fail prematurely during mechanical testing. These two failures prompted an investigative analysis and a series of studies to determine the causes of the cracking and erratic behavior observed in this alloy. Quench-related failures whereby components that cracked either during or immediately after the heat treatment/quenching operation were sectioned for metallographic examination of the microstructure to examine the degree of phase transformation. Examination of premature tensile specimen failures by scanning electron microscopy and X-ray imaging of fracture surfaces revealed pockets of inclusions at the crack origins. In addition, tests were conducted to evaluate the detrimental effects of internal hydrogen on ductility and crack initiation in this alloy.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006387
EISBN: 978-1-62708-217-4
Abstract
A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed that the cracking pattern initiated and progressed by an intergranular failure mechanism. It was concluded that failure of the catapult attachment swivel fixture occurred by SCC. It was recommended that the 7075 aluminum ejection seat fixture be supplied in the T-73 temper to minimize susceptibility to SCC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006394
EISBN: 978-1-62708-217-4
Abstract
A preflight inspection found a broken diaphragm from a side controller fabricated from 17-7 PH stainless steel in the RH 950 heat treatment condition. Failure occurred by cracking of the base of the flange-like diaphragm. The crack traveled 360 deg around the diaphragm. Scanning electron microscopy (SEM) revealed that the failure occurred by a brittle intergranular mechanism and stress-corrosion cracking (SCC), and indicated a failure mode of selective grain-boundary separation. The diaphragms were heat treated in batches of 25. An improper heat treatment could have resulted in the formation of grain boundary precipitates, including chromium carbides. It was concluded that failure of the diaphragm was due to a combination of sensitization caused by improper heat treatment and subsequent SCC. It was recommended that the remaining 24 sensor diaphragms from the affected batch be removed from service. In addition, a sample from each heat treat batch should be submitted to the Strauss test (ASTM A262, practice E) to determine susceptibility to intergranular corrosion. Also, it was recommended that a stress analysis be performed on the system to determine whether a different heat treatment (which would offer lower strength but higher toughness) could be used for this part.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
Abstract
New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened, H2SO4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Scanning electron microscopy and microprobe analysis (both conventional energy-dispersive and Auger analyzers) showed that the anodic coating was applied over an improperly cleaned and contaminated surface. The expanding corrosion product had cracked and, in some places, had flaked away the anodized coating. The corrodent had penetrated the base aluminum in the form of subsurface intergranular attack to a depth of 0.035 mm (0.0014 in.). It was recommended that a vapor degreaser be used during cleaning prior to anodizing. A hot inhibited alkaline cleaner was also recommended during cleaning prior to anodizing. The panels should be dichromate sealed after anodizing. The use of deionized water was also recommended during the dichromate sealing operation. In addition, the use of an epoxy primer prior to shipment of the panels was endorsed. Most importantly, surveillance of the anodizing process itself was emphasized.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
Abstract
A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion products was seen on the fractured surface. Metallographic examination of the flange in the area of fracture initiation showed the presence of end grain exposure, which would promote SCC. Electron optical examination of the fracture clearly showed the flange was cracking by a mixed mode of stress corrosion and fatigue. The cracking was accelerated because of an inadvertent fit up stress during installation. The age of the crack could not be established. However, a reevaluation of prior x-ray inspections in this area would result in some close estimate of the age of the crack. End grain exposure further promoted SCC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006409
EISBN: 978-1-62708-217-4
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006413
EISBN: 978-1-62708-217-4
Abstract
Examination of a 7075-T6 aluminum alloy pylon strut revealed cracks in two locations on the ears of the strut. Because the part was still intact, the cracks had to be forced open so that the fractures could be examined. Scanning electron microscopy (SEM) of the opened cracks showed that the crack surfaces were covered with a mud crack pattern suggestive of stress-corrosion cracking (SCC). The T6 temper is susceptible to SCC. It was concluded that cracking of the strut could have been aggravated by the hard landing experienced by the aircraft. The strut, however, contained stress-corrosion cracks which were present before the landing. It was recommended that an inspection for SCC be made of all pylon struts with a similar service life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001555
EISBN: 978-1-62708-217-4
Abstract
One main undercarriage axle made of high strength alloy steel was subjected to simulated fatigue test for 6000 h of service. After only 300 h it broke in two along the sharp radius. The fracture revealed a coarse, irregular, and brittle surface before final fracture by thick angular shear lip zone. The presence of micropores in the cleavage facets as well as at the grain boundaries and hairline type crack indications under SEM examination were all suggestive of hydrogen embrittlement. On the basis of investigation results and observations, it was concluded that the transverse breakage of the axle had occurred intergranularly in a brittle manner, possibly, initiated by a shallow zone of fatigue along the sharp radius acting as stress riser.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001507
EISBN: 978-1-62708-217-4
Abstract
A large four-engine aircraft was on a cargo flight at night when a loud bang was heard, accompanied by a loss of power from both engines on the left side. After an emergency landing, it was discovered that the propellers from both left side engines were missing. The initial investigation determined that the four-bladed propeller from the left inboard engine had separated in flight, subsequently impacting the left outboard engine, causing its propeller to separate also. Three years later, the left inboard propeller hub was recovered. All four blades had separated through the shank area adjacent to the hub. Detailed SEM examination confirmed a fatigue mode of failure in this area with a primary single origin on the inside surface of the shank. The main fatigue origin site was coincident with one of the defects on the inner surface of the blade shank. The most probable source for creating the defects on the ID bore of the shank was the blade tip chrome plating process, which was carried out during the last overhaul prior to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091655
EISBN: 978-1-62708-229-7
Abstract
Cracking occurred in an ASME SB166 Inconel 600 safe-end forging on a nuclear reactor coolant water recirculation nozzle while it was in service. The safe-end was welded to a stainless-steel-clad carbon steel nozzle and a type 316 stainless steel transition metal pipe segment. An Inconel 600 thermal sleeve was welded to the safe-end, and a repair weld had obviously been made on the outside surface of the safe-end to correct a machining error. Initial visual examination of the safe-end disclosed that the cracking extended over approximately 85 deg of the circular circumference of the piece. Investigation (visual inspection, on-site radiographic inspection, limited ultrasonic inspection, chemical analysis, 53x metallographic cross sections and SEM images etched in 8:1 phosphoric acid) supported the conclusion that the cracking mechanism was intergranular SCC. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0089663
EISBN: 978-1-62708-229-7
Abstract
A crack was discovered in a cast steel (ASTM A 356, grade 6) steam turbine casing during normal overhaul of the turbine. The mechanical properties of the casting all exceeded the requirements of the specification. When the fracture surface was examined visually, an internal-porosity defect was observed adjoining a tapped hole. A second, much larger cavity was also detected. Investigation (visual inspection and 7500x SEM fractographs) supported the conclusions that failure occurred through a zone of structural weakness that was caused by internal casting defects and a tapped hole. The combination of cyclic loading (thermal fatigue), an aggressive service environment (steam), and internal defects resulted in gradual crack propagation, which was, at times, intergranular-with or without corrosive attack-and, at other times, was transgranular.
1