Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Optical metallography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.