Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Hardfacing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Failure of a Dragline Bucket Tooth
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046378
EISBN: 978-1-62708-234-1
Abstract
River water was pumped into a brine plant by a battery of vertical pumps, each operating at 3600 rpm and at a discharge pressure of 827 kPa (120 psi). The pumps were lubricated by means of controlled leakage. The 3.8 cm (1 in.) OD pump sleeves were made of an austenitic stainless steel and were hard faced with a fused nickel-base hardfacing alloy (approximately 58 HRC). Packing for the pumps consisted of a braided PTFE-asbestos material. After several weeks of operation, the pumps began to leak and to spray water over the platforms on which they were mounted at the edge of the river. Analysis supported the conclusions that the leaks were caused by excessive sleeve wear that resulted from the presence of fine, abrasive silt in the river water. The silt, which contained hard particles of silica, could not be filtered out of the inlet water effectively.