Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Alpha and near alpha titanium alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
Abstract
An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence of fatigue. A blue etch-anodize inspection showed the presence of an alpha case along the edges of the repair weld. The alpha case, a brittle oxide-enriched layer, forms when welds are inadequately shielded from the atmosphere during deposition. The brittleness of this layer caused transgranular cracks to form and propagate in tension under the thermal stresses created by the repair-weld heat input. The crack resulted from contamination and embrittlement of a repair weld that had received inadequate gas shielding. Thermal stresses cracked the oxide-rich layer that formed. The gas-shielding accessories of the welding torch were overhauled to ensure that leak-in or entrainment of air was eliminated. Also, the purity of the shielding-gas supplies was rechecked to make certain that these had not become contaminated.