Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Brass
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001806
EISBN: 978-1-62708-241-9
Abstract
Coaxial cable connectors made of brass were failing at a high rate after less than one year of service in an outdoor industrial environonment. The observed failures, which consisted of cracks in the body and end cap, were analyzed and found to be brittle fractures due to stress-corrosion cracking. Two common stress-corrosion cracking tests for copper materials were conducted on new connectors from the same manufacturing lot, confirming the initial determination of the fracture mode. Additional testing as was done in the investigation is often helpful when analyzing corrosion failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001653
EISBN: 978-1-62708-219-8
Abstract
After six years of service, three water shut-off valves on a copper water line in a residential building were found to be inoperative. Macroscopic examination of the valves after disassembly revealed that all three failed at the key that holds the spindle in the gate. In addition, the color near the key changed from yellow to red-brown. The gate was made from leaded red brass (85-5-5-5) while the spindle was made from silicon brass. It was concluded that the valves failed by dezincification resulting from bimetallic galvanic corrosion. It is common in the valve industry to use components made of different alloys in the same valve, but this is not the best approach for all applications.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
Abstract
Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared. In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure after 42 days of exposure to NaNO3 + Ca(NO3)2 solution. None of the cupro-nickel specimens failed, but among those exposed to NH4NO3, 17% displayed crack initiation and 83% showed partial dealloying after 42 days. Based on the test results, the fuse material was changed from nickel silver to cupro-nickel, solving the SCC problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046469
EISBN: 978-1-62708-229-7
Abstract
After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001373
EISBN: 978-1-62708-215-0
Abstract
Two new chrome-plated CDA 377 brass valves intended for inert gas service failed on initial installation. After a pickling operation to clean the metal, the outer surfaces of the valves had been flashed with copper and then plated with nickel and chromium for aesthetic purposes. One of the valves failed by dezincification. The porous copper matrix could not sustain the clamping loads imposed by tightening the pressure relief fitting. The second valve failed by shear overload of the pressure relief fitting. Overload was facilitated by a reduction of cross-sectional area caused by intergranular attack and slight dezincification of the inner bore surface of the fitting. Dezincification and intergranular attack were attributed to excessive exposure to nonoxidizing acids in the pickling bath.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
Abstract
Two hot water reheat coil valves from a heating/ventilating/air-conditioning system failed in service. The values, a 353 copper alloy 19 mm (3/4 in.) valve and a 360 copper alloy 13 mm (1/2 in.) valve, had been failing at an increasing rate. The failures were confined to the stems and seats. Visual examination revealed severe localized metal loss in the form of deep grooves with smooth and wavy surfaces. Metallographic analysis of the grooved areas revealed uniform metal loss. No evidence of intergranular or selective attack indicating erosion-corrosion was observed, Recommendations included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001310
EISBN: 978-1-62708-215-0
Abstract
Leaks developed in 22 admiralty brass condenser tubes. The tubes were part of a condenser that was being used to condense steam from a nuclear power plant and had been in operation for less than 2 years. Analysis identified three types of failure modes: stress-corrosion cracking, corrosion under deposit (pitting and crevice), and dezincification. Fractures were transgranular and typical of stress-corrosion cracking. The primary cause of the corrosion deposit was low-flow conditions in those parts of the condenser where failure occurred. Maintenance of proper flow conditions was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
Abstract
Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits. Stress-corrosion cracking was shown to have caused the failure. The most probable corrosive was ammonia or an ammonium compound in the presence of oxygen and water. All of the tubes were replaced.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001045
EISBN: 978-1-62708-214-3
Abstract
A failure analysis was conducted on brass alloy 270 heat exchanger tubes that were pulled from a unit used to cool oil for the speed regulators and thrust bearings of a hydroelectric power plant. The tubes began to leak after approximately 5.5 years of service. Macrophotography and scanning electron microscopy were used to examine samples from the tubes. An energy-dispersive electron microprobe analysis was carried out to evaluate the zinc distribution. Results showed that the failure was due to dezincification. Replacement of the tubes with new tubes fabricated from a dezincification-resistant alloy was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001057
EISBN: 978-1-62708-214-3
Abstract
A brass (CDA alloy 230) pipe nipple that was part of a domestic cold water bath system failed two weeks after installation. Macrofractography, SEM examination, metallography, and chemical analyses were performed on specimens cut through the main fracture surface. The physical and background evidence obtained indicated failure due to cracking initiated by stamped markings on the pipe wall and extended by high circumferential residual stresses. It was recommended that annealed pipe be used.