Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Aluminum-magnesium-silicon alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
Abstract
Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al-6063 billet material. They were examined to identify critical fatigue failure locations, determine corresponding stresses and strains, and uncover correlations with process parameters, design features, and life cycle data. The fatigue damage models are based on Morrow’s stress and strain-life models for flat extrusion die and account for bearing length, fillet radius, temperature, and strain rate. They were shown to provide useful information for the analysis and prevention of die failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001710
EISBN: 978-1-62708-229-7
Abstract
Aluminum-clad spent nuclear fuel is stored in water filled basins at the Savannah River Site awaiting processing or other disposition. After more than 35 years of service underwater, the aluminum storage racks that position the fuel bundles in the basin were replaced. During the removal of the racks from the basin, a failure occurred in one of the racks and the Savannah River Technology Center was asked to investigate. This paper presents the results of the failure analysis and provides a discussion of the effects of corrosion on the structural integrity of the storage racks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
Abstract
A two-section extension ladder, made from 6061-T6 aluminum alloy extrusions and stampings that were riveted together at each rung location and at the ends of side rails, broke in service after having been used at the sites of several fires by the fire department of a large city. The fracture surfaces were examined visually and by optical (light) stereomicroscopy. Material testing showed a sample to be within the specified material limits for aluminum alloy 6061. Microscopic examination showed no significant differences in microstructure or grain size among the four T-sections, and thickness measurements at various locations indicated that thicknesses were well within standard industry tolerances for aluminum extrusions in this size range. However, hardness testing of the four T-sections showed that in two, hardness was considerably lower than the acceptable hardness for the T6 temper and were within the range for 6061-T4 (acceptable hardness, 19 to 45 HRB). This indicated they had been naturally aged at room temperature after solution heat treatment instead of artificially aged as per specs. Edge cracking in two of the T-sections was the result of improper conditions during extrusion of the T-sections; however, this condition was not a primary cause of failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047080
EISBN: 978-1-62708-235-8
Abstract
Several of the aluminum alloy 6061-T6 drawn seamless tubes (ASTM B 234, 2.5 cm (1.0 in.) OD with wall thickness of 1.7 mm (0.065 in.)) connecting an array of headers to a system of water-cooling pipes failed. The tubes were supplied in the O temper. They were bent to the desired curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported the conclusions that bending of the connector tubes in the annealed condition induced critical strain near the neutral axis of the tube, which resulted in excessive growth of individual grains during the subsequent solution treatment. Recommendations included bending the connector tubes in the T4 temper as early as possible after being quenched from the solution temperature. The tubes should be stored in dry ice after the quench until bending can be done. The tubes should be aged immediately after being formed. Flattening and slow-bend tests should be specified to ensure that the connector tubes had satisfactory ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
Abstract
The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source. The storage ring vacuum chamber is fabricated from 6061 extruded aluminum. Water connections to the vacuum chambers that were fabricated from 3003 aluminum had developed water leaks, which were subsequently remedied after considerable investigations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001516
EISBN: 978-1-62708-234-1
Abstract
This paper deals with disk drive failures that occur in the interface area between the head and disk. The failures often lead to the loss of stored data and are characterized by circumferential microscratches that are usually visible to the unaided eye. The recording media in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between head and disk asperities. The contact generates debris that, as it accumulates, increases contact pressure between the read-write head and the surface of the disk. Under sufficient pressure, the magnetic coating material begins wearing away, resulting in data loss.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006398
EISBN: 978-1-62708-217-4
Abstract
Inspections and microstructural analysis revealed intergranular corrosion of 6061-T6 aluminum alloy aircraft fuel line beneath ferrules. The cause of the corrosion was traced to the fuel line marking process, which involved electrolytic labeling. Although subsequent rinsing of the fuel lines washed off most of the electrolyte, some was trapped between the 6061-T6 tubing and the ferrule. This condition made intergranular corrosion of the fuel lines inevitable. The attack caused grains to become dislodged, giving the appearance of pitting. Corrosion penetrated approximately 0.13 mm (0.005 in.) into the tubing. Experiments indicated that the corrosion products were inactive. It was recommended that another marking process be used that does not involve corrosive materials. The prevention of electrolyte from being trapped between the tubing and ferrules by using a MIL-S-8802 sealant was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
Abstract
Several elbow subassemblies comprising segments of oil-line assemblies that recycled aircraft-engine oil from pump to filter broke in service. The components of the subassemblies were made of aluminum alloy 6061-T6. Two subassemblies were returned to the laboratory to determine cause of failure. In one, the threaded boss had separated from the elbow at the weld. In the other, the failure was by fracture of the elbow near the flange. The separation of the threaded boss from the elbow was due to a poor welding procedure. Crack propagation was accelerated by fatigue caused by cyclic service stresses. The fracture of the second elbow near the flange was caused by overaging during repair welding of the boss weld. Satisfactory weld penetration was achieved by improved training of the welders plus more careful inspection. Repair welding was prohibited, to avoid recurrence of overaging from the welding heat. Additional support for the oil line was installed to reduce vibration and minimize fatigue of the elbow.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047072
EISBN: 978-1-62708-217-4
Abstract
Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall revealed that the engine air-intake bullet assembly had dislodged and was seated against the engine-inlet guide vanes at the 3 o'clock position. The bullet assembly consisted of an outer aerodynamic shell and an inner stiffener shell, both of 1.3 mm (0.050 in.) thick aluminum alloy 6061-T6, and four attachment clips of 1 mm (0.040 in.) thick alclad aluminum alloy 2024-T42. Each clip was joined to the outer shell by 12 spot welds and was also joined to the stiffener. Analysis (visual inspection, dye-penetrant inspection, and 10x/150x micrographs of sections etched with Keller's reagent) supports the conclusion that the outer shell of the bullet assembly separated from the stiffener because the four attachment clips fractured through the shell-to-clip spot welds. Fracture occurred by fatigue that initiated at the notch created by the intersection of the faying surfaces of the clip and shell with the spot weld nuggets. The 6061 aluminum alloy shell and stiffener were in the annealed (O) temper rather than T6, as specified. Recommendations included heat treating the shell and stiffener to the T6 temper after forming.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001605
EISBN: 978-1-62708-217-4
Abstract
After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic concepts. As the crack propagated, striations were created on the fracture surface as a result of service-induced load changes. The size of the striations were measured to estimate crack propagation rate. Remaining lifetime estimates were also made. The dimensions of plastically stretched zones found at the tips of the cracks were evaluated using electron micrograph stereo image pairs to characterize local fracture toughness. To complete the failure analysis, nondestructive evaluation, metallographic examination, and chemical investigations were carried out. No secondary cracks could be found. Most of the broken parts showed that the microstructure, the hardness, and the chemical composition of the Al-alloy were within the specification, but some of the cracked parts were manufactured using a different material than that specified.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
Abstract
Several 6063-T6 aluminum alloy extension ladders of the same size and type collapsed in service in the same manner; the extruded aluminum alloy 6063-T6 side rails buckled, but the rungs and hardware remained firmly in place. The ladders had a maximum extended length of 6.4 m (21 ft) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads that produced stresses beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion.