Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Metallurgical furnaces
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
Abstract
After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection, chemical analysis, microstructural characterization, and mechanical property testing. The pipe was made from nonresulfurized carbon steel as specified and was lined with an alumina refractory. Visual inspection revealed cracks in the refractory lining, which corresponded with the location of the bulge. Microstructural and EDS analysis yielded evidence of overheating, revealing voids, scale, grain boundary oxidation, decarburization, and grain coarsening on the inner surface of the pipe, which also suggest the initiation of creep. Based on the information gathered during the investigation, the blow pipe was exposed to high temperatures when the liner cracked and subsequently bulged out due to creep.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046995
EISBN: 978-1-62708-232-7
Abstract
Three radiant tubes, made of three different high-temperature alloys, were removed from a carburizing furnace after approximately eight months of service when they showed evidence of failure by collapsing (telescoping) in a region 30 cm (12 in.) from the tube bottoms in the vicinity of the burners. The tubes had an original wall thickness of 3.0 mm (0.120 in.) and were made of three different alloys: the first was Hastelloy X; the second alloy was RA 333, a wrought nickel-base heat-resistant alloy; and the third was experimental alloy 634, which contained 72% Ni, 4% Cr, and 3.5% Si. The three radiant tubes had been operated at a temperature of about 1040 deg C (1900 deg F) to maintain furnace temperatures of 900 to 925 deg C (1650 to 1700 deg F). Analysis (visual inspection and micrographic examination) supported the conclusion that all three tubes failed by corrosion. Recommendations included replacing the material with an alloy, such as RA 333, with a higher chromium content and with an additional element, like silicon, resistant to carburization-oxidation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001233
EISBN: 978-1-62708-232-7
Abstract
High-chromium steel pipes 42.25 x 3.25 mm from a blast furnace gas fired recuperator for the preheating of air were heavily oxidized and perforated in places. It was found that the blast furnace gas had a high sulfur content. Both the carburization and the formation of sulfide proved that in addition, from time to time at least, combustion was incomplete and the operation was carried out in a reducing atmosphere, with the result that oxygen deficiency prevented the formation or maintenance of a protective surface layer on the external surface of the pipes. The sulfur would probably not have damaged the nickel-free steel used here at the given temperatures if it had been present as sulfur dioxide in an oxidizing atmosphere. The damage was therefore caused primarily by an incorrectly conducted combustion process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001225
EISBN: 978-1-62708-232-7
Abstract
Three radially-cracked disks that circulated the protective gases in a bell-type annealing furnace were examined. During service they had been heated in cycles of 48 h to 720 deg C for 3 h each time, then were kept at temperature for 15 h followed by cooling to 40 deg C in 30 h, while rotating at 1750 rpm. Two disks were cracked at the inner face of the sheet metal rim while the rim of the third was completely cracked through. An analysis of the sheet metal rim of one of the disks showed the following composition: 0.06C, 1.98Si, 25.8Cr, and 35.8Ni. A steel of such high chromium content was susceptible to s-phase formation when annealed under 800 deg C. The material selected was therefore unsuitable for the stress to be anticipated. In view of the required oxidation resistance, a chromium-silicon or chromium-aluminum steel with 6 or 13% Cr would have been adequate. If the high temperature strength of these steels proved inadequate, an alloy lower in chromium would have been preferable.