Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Polymer product forms
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090439
EISBN: 978-1-62708-220-4
Abstract
A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC) resin plasticized with trioctyl trimellitate. Investigation included visual inspection, micro-FTIR in the ATR mode, and thermogravimetric analysis. The spectrum on the failed tubing exhibited absorption bands indicative of a PVC resin containing an adipate-based plasticizer. Thermograms of the failed pieces and a reference sample of tubing that performed well showed that the reference material contained a trimellitate-based plasticizer and that the failed material contained an adipate-based material. The conclusion was that the failed tubing had been produced from a formulation that did not comply with the specified material and, as a result, was not as thermally stable as the reference material.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
Abstract
Cracking occurred within the plastic jacket (injection molded from an impact-modified, 15% glass-fiber-reinforced PET resin.) of several assemblies used in a transportation application during an engineering testing regimen which involved cyclic thermal shock (exposing the parts to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM views, micro-FTIR, and analysis using DSC and TGA) with non-failed parts supported the conclusion that that the failure was via brittle fracture associated with the exertion of stresses that exceeded the strength of the resin as-molded caused by the disparity in the CTEs of the PET jacket and the mating steel sleeve. The drying process had exposed the resin to relatively high temperatures, which caused substantial molecular degradation, thus limiting the part's ability to withstand the stresses. The drying temperature was found to be significantly higher than the recommendation for the PET resin, and the testing itself exposed the parts to temperatures above the recognized limits for PET.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090433
EISBN: 978-1-62708-218-1
Abstract
A production lot of plastic wire clips was failing after limited service. The failures were characterized by excessive relaxation of the clips, such that the corresponding wires were no longer adequately secured in the parts. No catastrophic failures had been encountered. Parts representing an older lot, which exhibited satisfactory performance properties, were also available for reference purposes. The clips were specified to be injection molded from an impact-modified grade of nylon 6/6. However, the part drawing did not indicate a specific resin. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The spectrum representing the reference parts showed a relatively higher level of a hydrocarbon-based impact modifier, while the results obtained on the failed parts showed the presence of an acrylic-based modifier. Also, the reference clip thermogram showed a melting transition attributed to a hydrocarbon-based impact modifier. The conclusion was that the control and failed clips had been produced from two distinctly different resins. It appeared that the material used to produce the failed clips had different viscoelastic properties, which produced a greater predisposition for stress relaxation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0090436
EISBN: 978-1-62708-233-4
Abstract
Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding resin used to produce the discrepant parts revealed that the pellets were of two general types, neither of which matched the pellets from a retained resin lot. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The thermograms supported the conclusion that the brittle couplings contained a significant level of contamination, polypropylene and nylon 6/6. The source of the polypropylene was likely the purging compound used to clean the compounding extruder. The origin of the nylon 6/6 resin was unknown but may represent a previously compounded resin.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090430
EISBN: 978-1-62708-222-8
Abstract
The handle from a consumer product exhibited an apparent surface defect. The handle had been injection molded from a medium viscosity grade ABS resin. The anomalous appearance was objectionable to the assembler of the final product and resulted in a production lot being placed on quality-control hold. Investigation included visual inspection, 24x micrographs, and FTIR in the reflectance mode. The spectrum obtained on the included material was characteristic of polybutadiene, the rubber-modifying agent present in ABS. This supported the conclusion that the inclusion's most likely source was an undispersed gel particle formed during the production of the molding resin.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090448
EISBN: 978-1-62708-222-8
Abstract
Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed the testing regimen. Grease was applied liberally within the housing assembly during production. Investigation included visual inspection, 24x SEM images, micro-FTIR in the ATR mode, and analysis using DSC. No signs of material contamination were found, but the thermograms showed a crystallization of the PET resin. The grease present within the housing assembly, analyzed using micro-FTIR, was composed of a hydrocarbon-based oil, a phthalate-based oil, lithium stearate, and an amide-based additive. The conclusion was that the appliance housings failed through environmental stress cracking caused by a phthalate-based oil that was not compatible with the PC portion of the resin blend. Thus, the resin conversion was the root cause of the failures. Additionally, during the injection molding process the molded parts had been undercrystallized, reducing their mechanical strength. More importantly, the resin had been degraded, producing a reduction in the molecular weight and reducing both the mechanical integrity and chemical-resistance properties of the parts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090427
EISBN: 978-1-62708-222-8
Abstract
A set of plastic grips from an electric consumer product failed while in service. The grips had been injection molded from a general-purpose grade of ABS resin. The parts had cracked while in use after apparent embrittlement of the material. Investigation (visual inspection, SEM imaging, and micro-FTIR in the ATR mode) showed that the spectrum representing the grip surface contained absorption bands associated with ABS as well as additional bands of significant intensity. A spectral subtraction removed the bands associated with the ABS resin resulting in a very good match with glyceride derivatives of fats and oils. This supported the conclusion that the grips failed via brittle fracture associated with severe chemical attack of the ABS resin. A significant level of glyceride derivatives of fatty acids, known to degrade ABS resins, was found on the part surface.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090424
EISBN: 978-1-62708-222-8
Abstract
A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual inspection and analysis using micro-FTIR in the ATR mode) revealed the spectrum showed changes in the relative intensities of several bands, as compared to the results representing the base material. A spectral subtraction was performed, and the results produced a good match with diphenyl carbonate, which is a common breakdown product produced during the decomposition of polycarbonate. The conclusion was that the most likely cause of the molecular degradation was improper drying and/or exposure to excessive heat during the injection molding process that in turn caused the material degradation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.