Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Marine piping systems
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091336
EISBN: 978-1-62708-234-1
Abstract
A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
Abstract
An austenitic stainless steel (type 316/316L stainless steel, schedule 40, 64 mm (2.5 in.) diam and larger) piping network used in the fire-sprinkler system in a large saltwater passenger and car ferry failed by rapid leaking. Operating conditions involved stagnant seawater at ambient temperatures. The pipe was in service for four weeks when three leaks appeared. Investigation (visual inspection and photographic images) supported the conclusion that the failure was caused by attack and corrosion damage of Cl ions in conditions that were ideal for three modes of highly accelerated pitting of austenitic stainless steel: the bottom surface, weld or HAZ pits, and crevices. Recommendations included proper material selection for piping, flanges, and weld rods with greater corrosion resistance. Proper filtering to prevent entrained abrasives and timely breakdown inspections were also advised.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001210
EISBN: 978-1-62708-227-3
Abstract
In a shipyard one of the two posts of a loading gear fractured under a comparatively small load at the point where it was welded into the ship’s deck. The post consisted of several pipe lengths that were produced by longitudinal seam welding of 27 mm thick sheets. The sheet metal was a construction steel of 60 to 75 kp/sq mm strength. Thick-walled parts of steels of such high strength must be preheated to approximately 200 deg C along the edges prior to welding to minimize the strong heat losses by the cold mass of the part. In the case under investigation this either was not done at all or the preheating was not high enough or sufficiently uniform. This damage was therefore caused by a welding defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
Abstract
The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water pipelines, lead to the conclusion that intercrystalline corrosion in steels involved precipitation of a surplus phase at grain boundaries. Intercrystalline corrosion in austenitic stainless steels due to precipitation of chromium carbides during conditions generated due to welding and ways to avoid the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes.