Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107
Tubes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001433
EISBN: 978-1-62708-235-8
Abstract
On attempting to manipulate or bend a boiler tube some 22 ft. long, sudden failure occurred at what appeared to be a butt weld in the tube. Externally, the weld reinforcement had been ground flush and the entire tube surface painted. Internally, the appearance and width of the heated band suggested that the weld had been made by the oxy-gas process. A lack of root fusion over most of its length was evident. Examination of the fracture faces, which were of crystalline appearance indicative of brittle behavior, indicated incomplete fusion of the weld root. Microscopic examination showed the deposit to possess a large grain size with a low carbon content disposed as carbides along the grain boundaries, a feature which would provide an explanation of the brittle behavior. Subsequent inspection showed that this tube was one of several of the batch ordered for retubing of a boiler and which had a 2 ft. length welded to one end to make up the length.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091009
EISBN: 978-1-62708-235-8
Abstract
A thick-walled tube that was weld fabricated for use as a pressure vessel exhibited cracks. Similar cracking was apparent at the weld toes after postweld stress relief or quench-and-temper heat treatment. The cracks were not detectable by nondestructive examination after welding, immediately prior to heat treatment. Multiple-pass arc welds secured the carbon-steel flanges to the Ni-Cr-Mo-V alloy steel tubes. Investigation (visual inspection, metallographic analysis, and evaluation of the fabrication history and the analysis data) supported the conclusion that the tube failed as a result of stress-relief cracking. Very high residual stresses often result from welding thick sections of hardenable steels, even when preheating is employed. Quenched-and-tempered steels containing vanadium, as well as HSLA steels with a vanadium addition, have been shown to be susceptible to this embrittlement. Manufacturers of susceptible steels recommend use of these materials in the as-welded condition.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
Abstract
A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking. Stress relief treatment of tube before brazing and immediate cleaning of brazing residual fluorides was recommended to avoid failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
Abstract
The presence of subsurface cracks in a longitudinal weld seam of an AISI type 316 stainless steel heat-exchanger shell was revealed by radiographic testing. Numerous intergranular cracks associated with the root pass of the weld, which had propagated both parallel and normal to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use of an incorrect electrode for the root pass as these electrodes are crack sensitive if overheated. The weld seam was completely ground out and replaced with the correct electrode material as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001211
EISBN: 978-1-62708-235-8
Abstract
An elbow made from welded steel tube had become leaky along a well-defined line in the axial direction. The entire wall of the tube was corroded, and the longitudinally-welded seam stood out clearly as a result of particularly intensive corrosive attack. The appearance of the corroded surface indicates the action of water with a high oxygen content. The oxygen in the return water must have originated from the ventilation of the open expansion vessel. Because of the corrosion-favoring effect of a crevice, water with a high oxygen-content that was perhaps still warm or even hot found particularly favorable conditions for corrosion in the defective welded seam (crevice corrosion). The tube material itself is perfectly satisfactory and in no way responsible for the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048787
EISBN: 978-1-62708-235-8
Abstract
Leakage from the top of a fire-extinguisher case, made of 1541 steel tubing and closed by spinning was observed during testing. Three small folds were observed on the surface by visual examination and one was sectioned. A very fine transverse fissure through the section was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation is done at a lower temperature to avoid formation of ferrite streaks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047080
EISBN: 978-1-62708-235-8
Abstract
Several of the aluminum alloy 6061-T6 drawn seamless tubes (ASTM B 234, 2.5 cm (1.0 in.) OD with wall thickness of 1.7 mm (0.065 in.)) connecting an array of headers to a system of water-cooling pipes failed. The tubes were supplied in the O temper. They were bent to the desired curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported the conclusions that bending of the connector tubes in the annealed condition induced critical strain near the neutral axis of the tube, which resulted in excessive growth of individual grains during the subsequent solution treatment. Recommendations included bending the connector tubes in the T4 temper as early as possible after being quenched from the solution temperature. The tubes should be stored in dry ice after the quench until bending can be done. The tubes should be aged immediately after being formed. Flattening and slow-bend tests should be specified to ensure that the connector tubes had satisfactory ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001626
EISBN: 978-1-62708-235-8
Abstract
A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. EDS analysis of the extracted substance revealed relatively high levels of iron and chromium, along with lower amounts of aluminum, silicon, sulfur, chlorine, calcium, manganese, and nickel. The iron, chromium, and nickel are likely in the form of dissolution products from the pickling solution. FTIR analysis revealed the presence of polypropylene and poly(ethylene:propylene). The EDS results showed that the discoloration of the tube was associated with oxidation products of the tube material, as well as adherent organic residue. Analysis by FTIR of the residue revealed detectable levels of two polymeric substances, which were later determined to be construction materials of the pickling tank. It was recommended that more frequent cleaning and/or replacement of the pickling solution be put into place and another type of tank material be considered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001194
EISBN: 978-1-62708-235-8
Abstract
A seamless hot-drawn boiler tube NW 300 of 318 mm OD and 9 mm wall thickness made of steel 15Mo3 was bent with sand filling after preheating allegedly to 1000 deg C. In the process it had cracked repeatedly in the drawn fiber. The composition corresponded to specifications, but exceptionally high copper content was noticeable. Microstructural examination showed the damage was due to overheating and burning during preheating and bending. Furthermore, crack formation was promoted by precipitation of metallic copper that had penetrated into the austenitic grain boundaries under the influence of tensile stresses that arose during bending. This phenomenon is known as “solder brittleness.”
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047615
EISBN: 978-1-62708-230-3
Abstract
After ten years of satisfactory operation, economizer-tube failures occurred in a large black liquor recovery boiler for a paper mill. The economizer contained 1320 finned tubes. Two fins ran longitudinally for most of the tube length and were attached by fillet welding on one side. The economizer tube leaks occurred at the end of the fin near the bottom of the economizer. A sample from a tube that had not failed showed heavy pitting attack on the inside of the tube, probably due to excess oxygen in the feedwater. Penetrant testing revealed numerous longitudinal cracks on the inside in the area of the fin tip. Cracking at the end of the fin-to-tube fillet weld was noted. The results indicate the failures were due to corrosion fatigue whose stresses were primarily thermally induced. A temporary solution included inspecting all tubes with shear-wave ultrasonics. Tubes with the most severe cracking were ground and repair welded. The square corners of the fins were trimmed back with a gradual taper so that expansion strains would be more gradually transferred to the tube surface. Water chemistry was closely evaluated and monitored, especially with regard to oxygen content.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001650
EISBN: 978-1-62708-230-3
Abstract
Several air heat exchangers failed in service in a pulp and paper operation. The tubes were made from AISI 316 stainless steel with an extruded aluminum fin mechanically bonded to the outside. Originally, the failures were blamed on poor tube to header welds. The units were sent back to the manufacturer for repair. Some of the units failed the hydrostatic test after they were repaired. Microscopic examination revealed the presence of branched transgranular cracks characteristic of stress-corrosion cracking. Only some of the tubes failed and these did so by stress-corrosion cracking. The most probable primary cause of the stress-corrosion cracking was local high residual stresses indicated by the areas of high hardness in the tubes. Low halogens in the water and airborne corrodents found normally in a pulp and paper mill were all that were required in the presence of high residual stresses in the tubes to initiate stress-corrosion cracking. Use of a low-carbon grade of stainless steel such as 316L was recommended to facilitate formation of the tube without producing excessive residual stresses. It was recommended also that failed units be segregated until it can be determined if the failure was related to operating pressure or some other unique cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091378
EISBN: 978-1-62708-219-8
Abstract
A 12.7 mm (0.5 in.) diam tube was removed from a potable water supply due to leaks. The tube wall thickness was 0.711 mm (0.028 in.) with a thin layer of chromium plate on the OD surface. The tube had been in service for approximately 33 years. Investigation (visual inspection, EDS deposit analysis, metallurgical examination, and unetched magnified images) supported the conclusion that failure occurred due to porous material typical of plug-type dezincification initiating from the inside surface. Where the dezincification had progressed through the tube wall, the chromium plate had exfoliated from the base material and cracked. Recommendations included replacing the piping with a more corrosion-resistant material such as red brass (UNS C23000), inhibited Admiralty brass (UNS C44300), or arsenical aluminum brass (UNS C68700).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0060097
EISBN: 978-1-62708-219-8
Abstract
An eddy current survey of the copper evaporator (chiller) tubes in an absorption air-conditioning unit revealed two tubes in the evaporator bundle with indications typical of longitudinal cracks. Significant necking down and grain distortion at the fracture surfaces was revealed by metallographic examination. The fracture features were found to be characteristic of an overload failure in a ductile material. The ruptured tubes were concluded as a result of examination to have failed as a result of excessive internal pressure. The source of the excessive internal pressure was assumed to be a freeze-up of the tube side water that occurred during interruption of the tube side flow or misoperation of the unit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091699
EISBN: 978-1-62708-219-8
Abstract
Eddy-current inspection was performed on a leaking absorber bundle in an absorption air-conditioning unit. The inspection revealed crack-like indications in approximately 50% of the tubes. The tube material was phosphorus-deoxidized copper. Investigation (visual inspection, chemical analysis, 0.75x images, 2x macrographs after light acid cleaning to remove corrosion product, and 75x micrographs) supported the conclusion that the absorber tubes failed by SCC initiated by ammonia contamination in the lithium bromide solution. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
1