Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53
Forgings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047154
EISBN: 978-1-62708-223-5
Abstract
The head of a socket spanner made of heat-treated 0.40C-0.34Cr steel cracked in service. The pronounced fibrous structure of the component became evident as soon as it was etched with 2% nital. Folds in the material originating from the shaping process were visible, and the micrograph showed that cracks ran along these folds oriented according to the fiber. The fissures, with the exception of the hardening crack, were partly filled with oxide and showed signs of decarburization at the edges. From this it could be assumed that parts of the external skin had been forced into the folds during forging. This evidence supported the conclusion that even through there was some indication of chemical segregation, the folds made during forging initiated the main crack. Furthermore, even if the steel had been more homogeneous, hardening cracks would probably have been promoted by the coarse fissures at the fold zones.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0047158
EISBN: 978-1-62708-226-6
Abstract
The pointed ends of several stainless steel forceps split or completely fractured where split portions broke off. All the forceps were delivered in the same lot. The pointed ends of the forceps are used for probing and gripping very small objects and must be true, sound, and sharp. Analysis supported the conclusion that the failures to be the result of seams in the steel that were not joined during hot working. Recommendations included that closer inspection of the product take place at all stages of manufacturing. Inspection at the mill will minimize discrepancies at the source, and the inspection of the finished product will help detect obscure seams.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047109
EISBN: 978-1-62708-233-4
Abstract
A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle. The function of the valve is to open and close a port; thus, the valve is subjected to both impact and tensile loading. Analysis (visual inspection, hardness testing, and stress analysis) supported the conclusions that the valve stems were impact loaded to stresses in excess of their yield strength. That they failed in the threaded portion also suggests a stress-concentration effect. Recommendations included changing the material spec to a higher-strength material with greater impact strength. In this case, it was recommended that the stems, despite any possible design changes, be manufactured from an alloy such as PH 13-8Mo, which can be processed to a yield strength of 1379 MPa (200 ksi), with impact energies of the order of 81 J (60 ft·lbf) at room temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047151
EISBN: 978-1-62708-227-3
Abstract
A motorboat engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The analysis (visual inspection, 50x micrographs of sections etched with 2% nital, magnetic-particle inspection, and metallographic examination) supported the conclusion that the connecting rods were rendered susceptible to fatigue-crack initiation and propagation by the notch effect of coarse folds formed during the forging operation. One fracture was caused by fatigue resulting from operating stresses, and the other was a secondary tensile fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
Abstract
An LNG tanker experienced a fracture of the solid tail shaft, which is a section of the main drive shaft. The tail shaft was made of a forged low-carbon steel. In spite of two ultrasonic inspections, a large defect the size of a football in the center of the shaft was missed. During heat treating following forging, it was surmised that the defect led to the propagation of an internal brittle crack, or clink. A fatigue crack propagated from this origin to the outer surface of the shaft after about a year of service. Finally a last ligament of a few square inches held the shaft together and broke, leading to the separation of the shaft. The cause of failure was fatigue crack initiation and crack growth under reverse bending cyclic stresses. There was no indication that misalignment existed because there was no indication of fretting at the bolt holes in the flange at the end of the shaft. In the case of this shaft, a solution would have been to machine the core of the shaft to remove the brittle material or to use a tubular shaft.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001231
EISBN: 978-1-62708-232-7
Abstract
The rim of a gear wheel of 420 mm width and 3100 mm in diam broke after four years of operation time in a sheet bar three-high rolling mill. The rim was forged from steel with about 0.4C, 0.8Si and 1.1Mn. The rim started to break in the tooth bottom from a fatigue fracture which extended from the gear side to more than half the rim width. A second incipient failure commenced from the opposite tooth bottom. Both fractures joined below the tooth of the rim. Both incipient cracks were fatigue fractures with several starting points, all located in the transition between tooth flank and tooth bottom. The remaining failure was a fine-grained ductile fracture. It was found that the teeth were not supported uniformly over the entire width and were thus overloaded on one side. The transition from the tooth flanks to the tooth bottom was sharp-edged, causing a tension peak there. The tooth bottom was machined only roughly. Also, the yield point was a little bit too low.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091678
EISBN: 978-1-62708-217-4
Abstract
During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from aluminum alloy 2014-T6. Investigation (visual inspection, 2x views, and 140X micrographs etched with Keller's reagent) supported the conclusion that the cause of failure was SCC resulting from exposure to a marine environment. The fracture occurred in normal operation at a point where damage from pitting and intergranular corrosion acted as a stress raiser, not because of overload. The pitting and intergranular attack on the lug were evidence that the surface protection of the part had been inadequate as manufactured or had been damaged in service and not properly repaired in routine maintenance. Recommendations included anodizing the lug and barrel in sulfuric acid and giving them a dichromate sealing treatment, followed by application of a coat of paint primer. During routine maintenance checks, a careful examination was suggested to look for damage to the protective coating, and any necessary repairs should be made by cleaning, priming, and painting. Severely corroded parts should be removed from service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046022
EISBN: 978-1-62708-217-4
Abstract
A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks on the inside surface of a bearing hole, and small areas of pitting corrosion were visible on the exterior surface of the fitting. The analysis also revealed a small number of rosettes, suggestive of eutectic melting, in an otherwise normal structure. These examinations and analyses support the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility was acceptable so rosettes found in the microstructure are believed to have been nondamaging. Had they contributed to the failure, the ductility would have been very low. The recommendations included inspection for cracks and revising the manufacturing process to include a fluorescent liquid-penetrant inspection before anodizing, because chromic acid destroys the penetrant. This inspection would reduce the possibility of cracked parts being used in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
Abstract
A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor the roll mileage was reported, but about 300 days had elapsed between the date of manufacture and the date the wheel was removed from service. The analysis (visual inspection, macrographs, micrographs, electron microprobe) supported the conclusions that the wheel half failed by fatigue. The fatigue crack originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046146
EISBN: 978-1-62708-217-4
Abstract
The torque-arm assembly (aluminum alloy 7075-T73) for an aircraft nose landing gear failed after 22,779 simulated flights. The part, made from an aluminum alloy 7075-T73 forging, had an expected life of 100,000 simulated flights. Initial study of the fracture surfaces indicated that the primary fracture initiated from multiple origins on both sides of a lubrication hole that extended from the outer surface to the bore of a lug in two cadmium-plated flanged bushings made of copper alloy C63000 (aluminum bronze) that were press-fitted into each bored hole in the lug. Sectioning and 2x metallographic analysis showed small fatigue-type cracks in the hole adjacent to the origin of primary fracture. Hardness and electrical conductivity were typical for aluminum alloy 7075. This evidence supported the conclusion that the arm failed in fatigue cracking that initiated on each side of the lubrication hole since no material defects were found at the failure origin. Recommendations included redesign of the lubrication hole, shot peeing of the faces of the lug for added resistance to fatigue failure, and changing of the forging material to aluminum alloy 7175-T736 for its higher mechanical properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047165
EISBN: 978-1-62708-217-4
Abstract
Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during eddy-current testing. The flange on the second wheel half failed after only 31 landings, when about 46 cm (18 in.) of the flange broke off as the aircraft was taxiing. Stains on the fracture surfaces were used to determine when cracking was initiated. The analysis (visual inspection, liquid penetrant inspection, and micrographs with deep etching in aqueous 20% sodium hydroxide) supported the conclusion that failure on both wheel halves was by fatigue caused by a forging defect resulting from abnormal transverse grain flow. The crack in the first wheel half occurred during service, and the surfaces became oxidized. Because the fracture surface of the second wheel half had chromic acid stains, it was obvious that the forging defect was open to the surface during anodizing. No recommendations were made except to notify the manufacturer.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047169
EISBN: 978-1-62708-217-4
Abstract
The flange on an outboard main-wheel half (aluminum alloy 2014-T6 forging) on a commercial aircraft fractured during takeoff. The failure was discovered later during a routine enroute check. The flange section that broke away was recovered at the airfield from which the plane took off and was thus available for examination. Failure occurred after 37 landings (about 298 roll km, or 185 roll miles). Examination of the fracture surfaces revealed that a forging defect was present in the wall of the wheel half. The anodized coating showed distinct twin-parallel and end-grain patterns between which the fracture occurred. The periphery of the defect was the site of several small fatigue cracks that eventually progressed through the remaining wall. Rapid fatigue then progressed circumferentially. Metallographic examination using Keller's reagent showed that the microstructure was normal for aluminum alloy 2014-T6 and the hardness surpassed the minimum hardness required for aluminum alloy 2014-T6. An abrupt change in the direction of grain flow across the fracture plane indicated that the wall had buckled during forging. This evidence supported the conclusion that the wheel half failed in the flange by fatigue as the result of a rather large subsurface forging defect. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001731
EISBN: 978-1-62708-217-4
Abstract
Service failures have occurred in a number of aircraft parts made of quenched and tempered steel heat treated to ultimate tensile strengths of 260,000 to 280,000 psi. Some of these failures have been attributed to “delayed cracking” as a result of hydrogen embrittlement or to stress-corrosion. Because of the serious nature of the failures and because the mechanism of the fracture initiation is not well understood, unusually complete laboratory investigations have been conducted. Three of these investigations are reviewed to illustrate the methods used in studying failures in aircraft parts. The results of the laboratory studies indicate that unusual care is necessary in the processing and fabrication of ultra-high-strength steel and in the design and maintenance of the structures in which it is used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001553
EISBN: 978-1-62708-217-4
Abstract
A connecting rod from a failed engine ruptured in fatigue without evidence of excessive stresses, detonation, overheating, or oil starvation. The origin of the fatigue failure was completely mutilated but decarburization was observed. Significant amounts of decarburization (0.010 to 0.015 in.) were found also in other forgings, such as exhaust rocker arms, main rotor drag brace clevises, bolts of carriage diagonal struts, and spring legs of main landing gears. The failure mode was low-stress, high-cycle fatigue involving tension and bending loads. The main cause was a manufacturing deficiency. The usual way to eliminate decarburization is to machine off the soft skin or employ better quality control when making them. Many aircraft manufacturers employ forged parts with machined surfaces or with shot-peened as-forged surfaces without excessive decarburization.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0001784
EISBN: 978-1-62708-218-1
Abstract
Field fatigue failures occurred in a hand-operated gear shift lever mechanism made of 1049 medium carbon steel hardened to 269 to 285 HB. The failures occurred in the 3.18 mm (0.127 in.) radius. Redesign increased the shift lever's diameter to 25 mm (1 in.) and the radius to 4.75 mm (0.187 in.). Also, instead of the as-forged surface, it was expedient to machine the radius. The as-forged surface at 360 MPa (52 ksi) maximum working stress would not ensure satisfactory life because the recalculated maximum stress was 390 MPa (57 ksi). However, the machined surface with a maximum working stress of 475 MPa (69 ksi) gives a safe margin above the 390 MPa (57 ksi) requirement for design stress. Interpreting these values, the forged surface should have a life expectancy of 1,000,000 cycles of stress. However, because the load cycle was somewhat uncertain, the machined radius was chosen to obtain a greater margin of safety. Redesigning eliminated the failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001173
EISBN: 978-1-62708-218-1
Abstract
Ball joints made from carburized En 353 (BS970:815A16) steel failed after several hours of being fitted into vehicles. The parts were forged, machined, and thread rolled. The threads were copper plated to prevent carburization. The heat treatment consisted of carburizing in a cyanide bath for 12 hours at 930 deg C. After tempering for 2 h at 170 to 175 deg C, the copper plate was removed by immersing in an acid bath for 45 min. The investigations found the microstructure, hardness, and chemistry all met the specification. The case depth was approximately 0.75 mm to 1.0 mm. The SEM studies showed that it was a brittle fracture and completely intergranular to a depth of about 2.5 mm. It was concluded that the failure was due to hydrogen embrittlement for the following reasons: (i) failure did not occur immediately after loading, (ii) the fracture was intergranular to a depth of two to three times the case depth, (iii) secondary cracks were observed at the surface. The hydrogen was introduced during copper plate removal by acid dipping. If the tempering operation was performed after the acid dip operation, the hydrogen would have been driven out.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001256
EISBN: 978-1-62708-218-1
Abstract
There was a large incidence of surface defects on the crank pins and journals and other areas of crank shafts of a high power automotive engine. The steel used was a Cr-Mo type of nitriding steel. Metallographic observations conclusively proved that the defective areas were entrapment of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content might have resulted in deoxidizing stage. Particularly the absence of Fe in some areas in the inclusion was indicative of precipitation deoxidation by ferromanganese/ferrosilicon. The defects apparently did not have time to coalesce and rise up to the top.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046182
EISBN: 978-1-62708-218-1
Abstract
A connecting cap from a truck engine fractured after 65,200 km (40,500 mi) of normal service. The cap was made from a 15B41 steel forging and was hardened to 29 to 35 HRC. Visual examination of the fracture surface disclosed an open forging defect across one of the outer corners of the cap. The defect extended approximately 9.5 mm (3/8 in.) along the side of the cap. The fracture surface exhibited beach marks typical of fatigue. The surface of the defect was stained, indicating that oxidation occurred either in heat treatment or in heating during forging. Deep etching of the fracture surface revealed grain flow normal for this type of forging, but no visible defects. 400x metallographic examination of a section through the fracture surface showed that the microstructure was an acceptable tempered martensite. However, oxide inclusions were present at the fracture surface. This evidence supported the conclusion that fatigue fracture initiated at a corner of the cap from a forging defect that extended to the surface. Fatigue cracking was propagated by cyclic loading inherent in the part. Recommendations included more careful fluorescent magnetic-particle inspection of the forged surfaces before machining and before putting the part into service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047121
EISBN: 978-1-62708-218-1
Abstract
A 1050 steel crankshaft with 6.4 cm (2.5 in.) diam journals that measured 87 cm (34.25 in.) in length and weighed 31 kg (69 lb) fractured in service. The shaft had been quenched and tempered to a hardness of 19 to 26 HRC, then selectively hardened on the journals to a surface hardness of 40 to 46 HRC. Visual inspection and 100x micrographs showed the fracture surface as having a complex type of fatigue failure initiated from subsurface inclusions in the transition zone between the induction-hardened surface and the softer core. The fractured shaft was examined for chemical composition and hardness, both of which were found to be within prescribed limits. This evidence supports the conclusions that the failure was caused by fatigue cracks that initiated in an area having an excessive amount of inclusions. The inclusions were located in a transition zone, which is a region of high stress. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001725
EISBN: 978-1-62708-229-7
Abstract
Another failure in a turbogenerator, similar to the accidents in Toronto described in Metal Progress in July 1956, was due to the presence of fatigue cracks at ventilating holes. These acted as stress-raisers during temporary and minor overspeeding, inducing an almost instantaneous brittle failure which wrecked the machine, fortunately without human casualty.
1