Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Cast bronze
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046414
EISBN: 978-1-62708-234-1
Abstract
Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001708
EISBN: 978-1-62708-217-4
Abstract
The paper describes the findings from a damaged propeller blade made from Mn-Ni-Al-bronze, commercially known as Superston 70 (ABS Type 5). The blade had broken at the 0.65 pitch radius location, and the fracture occurred in a brittle mode. The findings reported here point to two potential contributors to the propeller blade failure, viz., the presence of casting flaws at the low pressure side of the propeller blade and service stresses at this surface that reached approximately 400 MPa. This stress value exceeded the yield strength at the corresponding location of the unbroken blade by approximately 40%.