Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Cast copper alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001439
EISBN: 978-1-62708-235-8
Abstract
Persistent leakage was experienced from copper tube heaters which formed part of dairy equipment. Metallurgical examination of the brazed joints showed them to have suffered a preferential corrosion attack. This resulted in the phosphide phase of the brazing alloy being corroded away, leaving a weak, porous residual structure. The brazing alloy was of type CP 1 as covered by BS 1845. Header and tube materials were basically copper-nickel alloys for which the use of a phosphorus bearing brazing alloy is not recommended owing to the possibility of forming the brittle intermetallic compound, nickel phosphide. The use of a brazing alloy containing phosphorus was unsuitable on two counts and a quaternary alloy containing silver, copper, cadmium and zinc, such as those in group AG1 or AG2 of BS 1845 would be more suitable. However, because corrosive problems experienced in these units indicated severe service conditions, a proprietary alloy similar to AG1, but containing 3% nickel, was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0090943
EISBN: 978-1-62708-219-8
Abstract
A very large diameter worm gear that had been in service in a dam for more than 60 years exhibited cracks and was removed. It was reported that the high-strength, low-ductility cast bronze gear was only rarely stressed during service, associated with infrequent opening and closing of gates. Due to the age of the gear and the time frame of its manufacture, no original material specifications or strength requirements could be located. Likewise, no maintenance records of possible repairs to the gear were available. Investigation (visual inspection, chemical analysis, tension and hardness testing, 119x SEM images, and potassium dichromate etched 297x metallographic images) supported the conclusion that the bronze gear cracked via mixed-mode overload, rather than by a progressive mechanism such as fatigue or stress-corrosion cracking. The cracking was not associated with regions that would be highly stressed and did not appear to be consistently correlated to casting imperfections, repair welds, or associated heat-affected zones. Cracking across the gear face suggested that bending forces from misalignment were likely responsible for the cracking. Recommendations included further review of the potential root cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046414
EISBN: 978-1-62708-234-1
Abstract
Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047912
EISBN: 978-1-62708-225-9
Abstract
Examination of a connecting-rod shell bearing from a six-cylinder gasoline engine was done after it was returned to the factory. Copper-lead alloy SAE 485 bonded to a low-carbon steel backing was used to make the bearing and the oil used in the engine was the recommended one. Measurable material loss was visible over most of the bearing halves particularly in a wide region at the centerline. A brittle waxlike substance identified to be a mixture of copper and lead sulfides covered the visible shallow pits and the darkened region. Change of oil with greater frequency to prevent the buildup of sulfur compounds or bearing halves that have corrosion-resistant overlay materials were recommended as best solutions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001684
EISBN: 978-1-62708-225-9
Abstract
The steam tug Hercules was an ocean-going and bay tug for 55 years before being retired. It is now being restored by the National Park Service. A broken steam valve was obtained for microstructural examination. The body was gray cast iron, and the stem and seat were brass. The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass, which seated against the nut. The brass seat and stem show little corrosion. However, the alpha-beta brass nut and welded tip showed extensive dezincification. This process of removal of Zn and the retention of Cu began in the high Zn beta phase, but eventually both phases were attacked. The depth of penetration was consistent with dezincification rates reported in the literature for such brasses in salt water if the valve had been in service about 55 years.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001222
EISBN: 978-1-62708-225-9
Abstract
A full lift disk, made of die cast brass, which served as a lifting aid in a safety valve, had cracked in service at a number of locations in the vicinity of the threaded hole. During microscopic examination, agglomeration of oxide inclusions were noted in the region of the cracks. Because the die cast brass was alloyed with aluminum, these inclusions consisted predominantly of aluminum oxide. The tolerable limit in pores and oxide inclusions was greatly exceeded in the lift disk under examination. Above all, the numerous oxide skins disrupted the cohesion of the microstructure and were primarily responsible for the failure of the lift disk.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001708
EISBN: 978-1-62708-217-4
Abstract
The paper describes the findings from a damaged propeller blade made from Mn-Ni-Al-bronze, commercially known as Superston 70 (ABS Type 5). The blade had broken at the 0.65 pitch radius location, and the fracture occurred in a brittle mode. The findings reported here point to two potential contributors to the propeller blade failure, viz., the presence of casting flaws at the low pressure side of the propeller blade and service stresses at this surface that reached approximately 400 MPa. This stress value exceeded the yield strength at the corresponding location of the unbroken blade by approximately 40%.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
Abstract
After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300 (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x micrographs etched with H4OH, and 500x micrographs) supported the conclusions that the castings and bolts failed by SCC caused by the combined effects of dezincification damage and applied stresses. Recommendations included replacing the castings with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze).