Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Metal plate
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001447
EISBN: 978-1-62708-235-8
Abstract
Hydrogen embrittlement is the brittleness affecting copper and copper alloys containing oxygen which develops during heat treatment at temperatures of about 400 deg C (752 deg F) and above in an atmosphere containing hydrogen. The phenomenon of hydrogen embrittlement of copper and its alloys is illustrated by examples from practice and reference is made to data from recent publications on the subject. Embrittlement due to this cause can only be identified by microscopic examination because other modes of failure in copper; e.g., from heat cracking, mechanical overload, the formation of low melting point eutectics or corrosion; show a similar appearance when investigated on a macroscopic scale.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001393
EISBN: 978-1-62708-230-3
Abstract
Three examples of corrosion-fatigue cracking from the toes of substantial fillet welds applied to seal-leaking riveted seams in steam accumulators are described. In the first case, this practice resulted in a disastrous explosion; in the second, which involved two identical vessels at the same location, cracking in course of development was discovered during internal inspection. Microscope examination of several specimens cut to intersect a crack showed it to be typical of corrosion-fatigue; it was in the form of a broad fissure, contained oxide deposits, and the termination was blunt-ended. The two cases not only serve to illustrate the danger of applying fillet welds to seal the lap edges of riveted seams, but point to the inadvisability of employing riveted construction for vessels intended for service under conditions involving frequent pressure and thermal fluctuations, as it is extremely difficult to maintain the tightness of riveted seams under these conditions. Such vessels are now almost exclusively of all-welded construction
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001512
EISBN: 978-1-62708-228-0
Abstract
When a large LPG low-carbon steel storage tank was put into service for the first time and filled beyond the proof testing level, a brittle fracture crack initiated at a fillet weld between a stiffener ring and the wall. The crack propagated to a length of 5.5 m and arrested. Analysis showed that the plates satisfied the criteria of BS 4741. It was concluded that the cause of crack initiation was the lack of a mouse hole at the junction between the stiffening ring and the wall of the tank. The tank was repaired and put back in service. When it was filled beyond the proof test level, again a brittle crack was initiated at a horizontal weld defect and propagated vertically, destroying the tank and the liquefaction plant. The initiation site was a thumbnail elliptical crack in a horizontal weld, having a depth of 1.5 mm, and a length of 4.5 mm. This showed that as late the mid-1970s, misunderstanding of brittle fracture led to the wrong design and construction of an LPG storage tank. The best design specification is to use a correlation between LAST, the Lowest Anticipated Service Temperature, and the DBTT measured by either Charpy tests or DTT.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047105
EISBN: 978-1-62708-225-9
Abstract
The locking collar on a machine failed suddenly when the shaft it restrained was inadvertently subjected to an axial load slightly higher than the allowable working load. The locking collar fractured abruptly, producing four large fragments. This allowed the shaft to be propelled forcefully in the direction of the load, causing substantial damage to other machinery components in the vicinity. The failed component, which was 43 cm (17 in.) in diameter, was machined from 4140 plate and heat treated to 34 to 36 HRC. Analysis (visual inspection, composite micrographs, scanning electron microscopy, and mechanical-property analysis) supported the conclusions that the alloy steel plate used in this application contained significant brittle microstructural fibering or banding. This condition produced considerable anisotropy in ductility and toughness as revealed by mechanical testing. Unfortunately, the potential effects of anisotropy were apparently neglected when this component was designed and manufactured from the plate stock, because the loading was applied in a direction that stressed the weakest planes in the material, that is, a direction normal to the fibering. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
Abstract
A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity, hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese-to-sulfur ratio and be in a normalized condition, low-hydrogen electrodes and welding practices should be used, all corners should be generously radiused, the welds should be inspected and ground or dressed to minimize stress concentrations, postweld heating is advisable, and radiographic and penetrant inspection tests should be performed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001449
EISBN: 978-1-62708-221-1
Abstract
An anchorage plate which fractured was one of a pair used as intermediate members through which the boom suspension ropes were attached to the jury-mast of an excavator. Failure of the plate released the ropes on one side of the boom, resulting in extensive damage to the latter and also bending of the other anchorage plate. The anchorage plates were 23 x 9 in. and had been flame-cut from mild steel plate. Collars were fillet-welded on each side at both ends to provide extra bearing area for the pins. Holes had then been flame-cut slightly under size and bored to final dimensions. The plates were given a slight set after flame-cutting to provide a more direct line of pull for the ropes. The fracture surface was bounded by narrow lips, indicative of shear failure. Failure of the anchorage plate was attributed to cracks present at the junctions of the fillet welds, and deficient notch-ductility of the material from which the plates were made.