Skip Nav Destination
Close Modal
By
Neville Sachs, Neville W. Sachs
By
P. K. Chatterjee
By
Lester E. Alban
By
Lester E. Alban
By
Lester E. Alban
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Lester E. Alban
By
Friedrich Karl Naumann, Ferdinand Spies
By
Lester E. Alban
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 40
Gears
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Book Chapter
Failure Analysis of Gears and Reducers
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Book Chapter
Damages in Gears in the Transmission System of Heavy Duty Tracked Vehicles
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001248
EISBN: 978-1-62708-221-1
Abstract
Failure occurred in the teeth of a case-hardening Ni-Cr-Mo alloy steel spur gear in the transmission system of heavy duty tracked vehicles. The defects were in the nature of seizure on the involute profile. Scrutiny of the transmission system showed there might be choking in the lubricating oil line. Such would cause seizure of the gears and damage. The incidence of such defects stopped after corrective measures were taken.
Book Chapter
Overload Failure of a Spiral Bevel Gear and Pinion Set
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001501
EISBN: 978-1-62708-221-1
Abstract
A spiral bevel gear and pinion set that showed "excessive wear on the pinion teeth" was submitted for analysis. This gear set was the primary drive unit for the differential and axle shafts of an exceptionally-large front-end loader in the experimental stages of development. There was no evidence of tooth bending fatigue on either part. Several cracks were associated with the spalling surfaces on the concave sides of the 4820H NiMo alloy steel pinion teeth. The gear teeth showed no indication of fatigue. The primary mode of failure was rolling contact fatigue of the concave (drive) active tooth profile. The spalled area was a consequence of this action. The pitting low on the profile appeared to have originated after the shift of the pinion tooth away from the gear center. The shift of the pinion was most often due to a bearing displacement or malfunction. The cause of this failure was continuous high overload that may also have contributed to the bearing displacement.
Book Chapter
Tooth Bending Fatigue Failure of a Spiral Bevel Drive Set
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001497
EISBN: 978-1-62708-221-1
Abstract
A spiral bevel gear set in the differential housing of a large front-end loader moving coal in a storage area failed in service. The machine had operated approximately 1500 h. Although the failure involved only the pinion teeth, magnetic particle inspection was performed on each part. The 4817 NiMo alloy steel pinion showed no indication of additional cracking, nor did the 4820 NiMo alloy steel gear. The mode of failure was tooth bending fatigue with the origin at the designed position: root radius at midsection of tooth. The load was well centered, and progression occurred for a long period of time. The cause of failure was a suddenly applied peak overload, which initiated a crack at the root radius. Progression continued by relatively low overstress from the crack, which was now a stress-concentration point. This was a classic tooth bending fatigue failure.
Book Chapter
Rolling Contact Fatigue Failure of a Spiral Bevel Gear and Pinion Set
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001500
EISBN: 978-1-62708-221-1
Abstract
A ‘worn-out’ spiral bevel gear and pinion set was submitted for examination and evaluation. This was a spiral bevel drive set with the gear attached to a differential. The assembled unit was driving a new, large, experimental farm tractor in normal plowing and tilling operations. The primary failure was associated with the 4820H NiMo alloy steel pinion, and thus the gear was not examined. The mode of failure was rolling contact fatigue, and the cause of failure improper engineering design. The pattern of continual overload was restricted to a specific concentrated area situated diagonally across the profile of the loaded side, which was consistent on every tooth.
Book Chapter
Contact-Fatigue Failure of a Raceway for a Thrust Bearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047964
EISBN: 978-1-62708-223-5
Abstract
Drastic reduction in the service life of a production gearbox was observed. Within the gearbox, the axial load on a bevel gear (8620 steel, OD 9.2 cm) was taken by a thrust-type roller bearing (3.8 cm ID, 5.6 cm OD) in which a ground surface on the back of the bevel gear served as a raceway. Spalling damage on the ground bearing raceway at five equally spaced zones was disclosed by inspection of the bevel gear. The bearing raceway was checked for runout by mounting the gear on an arbor. It was found that the raceway undulated to the extent of 0.008 mm total indicator reading and a spalled area was observed at each high point. The presence of numerous cracks that resembled grinding cracks was revealed both by magnetic-particle inspection and microscopic examination. Spalling was produced by nonuniform loading in conjunction with grinding cracks. As corrective measures, the spindle of the grinding machine was reconditioned to eliminate the undulations and retained austenite was minimized by careful heat treatment.
Book Chapter
Fatigue Fracture of a Cast Chromium-Molybdenum Steel Pinion
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
Abstract
A cast countershaft pinion on a car puller for a blast furnace broke after one month of service; expected life was 12 months. The pinion was specified to be made of 1045 steel heat treated to a hardness of 245 HRB. The pinion steel was analyzed and was a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening of the tooth surfaces. Contributing factors included uneven loading because of misalignment and stress concentrations in the tooth roots caused by tool marks. Greater strength was provided by oil quenching and tempering the replacement pinions to a hardness of 255 to 302 HRB. Machining of the tooth roots was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup.
Book Chapter
Broken Rim of a Rolling Mill Transmission
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001231
EISBN: 978-1-62708-232-7
Abstract
The rim of a gear wheel of 420 mm width and 3100 mm in diam broke after four years of operation time in a sheet bar three-high rolling mill. The rim was forged from steel with about 0.4C, 0.8Si and 1.1Mn. The rim started to break in the tooth bottom from a fatigue fracture which extended from the gear side to more than half the rim width. A second incipient failure commenced from the opposite tooth bottom. Both fractures joined below the tooth of the rim. Both incipient cracks were fatigue fractures with several starting points, all located in the transition between tooth flank and tooth bottom. The remaining failure was a fine-grained ductile fracture. It was found that the teeth were not supported uniformly over the entire width and were thus overloaded on one side. The transition from the tooth flanks to the tooth bottom was sharp-edged, causing a tension peak there. The tooth bottom was machined only roughly. Also, the yield point was a little bit too low.
Book Chapter
Failure of Nose Gear Door Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006432
EISBN: 978-1-62708-217-4
Abstract
A failed 25 x 32 mm (1 x 1 in.) cadmium-plated 1040 carbon steel countersunk head type nose gear door securing bolt with a common screwdriver slot was examined. Fracture originated at a thread root and propagated across the cross section. The topography of the fracture was excessively rough and more granular than would be expected from pure mechanical fatigue. This indicated an allied corrosion mechanism. Cracks other than the one leading to failure were observed. Metallographic examination of the bolt cross section showed many cracks typical of stress-corrosion damage. It was concluded that the bolt failed by a combination of SCC and fatigue. It was recommended that aerospace-quality fasteners meeting NAS 7104, NAS 7204, or NAS 7504 be used to replace the currently used fasteners.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048257
EISBN: 978-1-62708-217-4
Abstract
Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified and it was suggested that it had resulted from surface defects. A decarburized surface layer and subsurface oxidation in the vicinity of pitting were revealed by metallographic examination of the 2% nital etched gear tooth sample. It was concluded that pitting had resulted as a combination of both the defects. The causes for the defects were reported based on previous investigation of heat treatment facilities. Oxide layer was caused by inadequate purging of air before carburization while decarburization was attributed to defects in the copper plating applied to the gear for its protection during austenitizing in an exothermic atmosphere. It was recommended that steps be taken during heat treatment to ensure neither of the two occurred.
Book Chapter
Cast Steel Pinion Gear Shafts with Insufficient Elongation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001254
EISBN: 978-1-62708-225-9
Abstract
The specified elongation of 10% could not be achieved in several hollow pinion gear shafts made of cast Cr-Mo steel GS 35 Cr-Mo 5 3 that were heat treated to a strength of 90 kp/sq mm. The steel was melted in a basic 3 ton arc furnace and deoxidized in the furnace and in the pan with a total of 7 kg aluminum. Fracture of a tensile specimen occurred with low elongation and, apparently, also with low reduction of area. In some places it was coarse grained conchoidal. It was found that the exceptionally low elongation of the cast specimens was due to excessive deoxidation by aluminum.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001748
EISBN: 978-1-62708-225-9
Abstract
A pinion gear made of AMS 6470 steel, nitrided all over, lost internal splined teeth due to wear. Spline failure of the power turbine gear caused an engine overspeed and disintegration. Excessive spline wear resulted from a new coupling being mated during overhaul with a worn gear spline. Wear on the spline teeth flanks of the coupling was attributed to severe wear on the mating gear (internal) spline teeth. The assigned cause was an inadequate maintenance procedure which resulted in a wear-damaged component being retained in the power train during engine overhaul. To prevent reoccurrence, specific inspection criteria were issued defining maximum limits for spline wear. A procedure and requirements were specified for installing the coupling and pinion gear at the next overhaul.
Book Chapter
Contact Fatigue Failure of an Axle Shaft Spur Pinion
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001498
EISBN: 978-1-62708-218-1
Abstract
One end of an axle shaft containing the integral spur pinion was submitted for examination, along with the report of a tooth pitting failure. The spur pinion, integral to the axle shaft, operated in a medium-size, off-highway truck at an open-pit mine, for “a relatively short time.” Only the pinion head had been returned. The shaft portion had been torch-cut away. Chemical analysis along with the microstructure confirmed the specified material was SAE 43BV12 Ni-Cr-Mo alloy steel. The mode of failure was surface contact fatigue through the shear plane subsurface at the lowest point of single-tooth contact. The cause of failure was tooth-tip interference from the mating gear teeth. Because the mating parts within the assembly had not been returned or examined, unanswered questions remained.
Book Chapter
Worn Gears for Fuel Injection Pumps
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001189
EISBN: 978-1-62708-218-1
Abstract
Two fuel injection pump gears that were nitrided in a cyanide bath were submitted by the engine manufacturer for examination of hardness distribution and failure analysis. The gears showed signs of wear after only comparatively brief operation. They were made of normalized unalloyed steel C 45 (Material No. 1.0503) according to DIN 17200 and were normalized. Gear 1 with 1905 h of operation showed at one side pittings on both flanks of the teeth as well as incipient fractures. Gear 2 with 1713 h of operation also showed at one side incipient fractures of the nitride layers at the outer part of the teeth. The nitride layer did not stand up to the high and one-sided compressive stress applied in this case and could not prevent pitting. It could even have accelerated the wear by the incipient break down. Gas nitriding at greater depth under application of a suitable special steel or case hardening would have been better under these circumstances.
Book Chapter
The Disruption of a Turbo-Alternator Gearbox
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001473
EISBN: 978-1-62708-229-7
Abstract
A combination of adverse factors was present in the disruption of a turbo-alternator gearbox. The major cause was the imposition of a gross overload far in excess of that for which the gearbox was designed. The contributory factors were a rim material (EN9 steel) that was inherently notch-sensitive and liable to rupture in a brittle manner. Discontinuities were present in the rims formed by the drain holes drilled in their abutting faces, and possibly enhanced by the stress-raising effect of microcracks in the smeared metal at their surfaces It is probable that the load reached a value in excess of the yield point within the delay time of the material so when the fracture was initiated, it was preceded by several microcracks giving rise to the propagation of a brittle fracture.
Book Chapter
Fatigue Fracture of a Chromium-Molybdenum Steel Integral Coupling and Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001499
EISBN: 978-1-62708-236-5
Abstract
Three spur gears made from 8622 Ni-Cr-Mo alloy steel formed a straight-line train in a speed reducer on a rail-mounted overslung lumber carrier. The gears were submitted for nondestructive examination and evaluation, with no accompanying information or report. Two teeth on one of the gears were found to be pitted, one low on profile and the adjacent tooth high on profile. The mating gear had a similar characteristic, two adjacent teeth with evidence of pitting and the same difference in profile. It was correctly deduced that the pitting occurred because the gears were in a static position under a reverberating load for an extended period of time.
Book Chapter
Tooth Bending Fatigue Failure of a Spiral Bevel Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
Abstract
A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went through the body of the gear. Wheel mileage of the assembly was 34,000 miles at the time of failure. All physical and metallurgical characteristics were well within specified standards, and both parts should have withstood normal loading conditions. The primary mode of failure was tooth bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore, it most likely was permanent misalignment within the assembly.
Book Chapter
Overload Failure of a Bronze Worm Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0090943
EISBN: 978-1-62708-219-8
Abstract
A very large diameter worm gear that had been in service in a dam for more than 60 years exhibited cracks and was removed. It was reported that the high-strength, low-ductility cast bronze gear was only rarely stressed during service, associated with infrequent opening and closing of gates. Due to the age of the gear and the time frame of its manufacture, no original material specifications or strength requirements could be located. Likewise, no maintenance records of possible repairs to the gear were available. Investigation (visual inspection, chemical analysis, tension and hardness testing, 119x SEM images, and potassium dichromate etched 297x metallographic images) supported the conclusion that the bronze gear cracked via mixed-mode overload, rather than by a progressive mechanism such as fatigue or stress-corrosion cracking. The cracking was not associated with regions that would be highly stressed and did not appear to be consistently correlated to casting imperfections, repair welds, or associated heat-affected zones. Cracking across the gear face suggested that bending forces from misalignment were likely responsible for the cracking. Recommendations included further review of the potential root cause.
1