Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Shaft locking devices
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047105
EISBN: 978-1-62708-225-9
Abstract
The locking collar on a machine failed suddenly when the shaft it restrained was inadvertently subjected to an axial load slightly higher than the allowable working load. The locking collar fractured abruptly, producing four large fragments. This allowed the shaft to be propelled forcefully in the direction of the load, causing substantial damage to other machinery components in the vicinity. The failed component, which was 43 cm (17 in.) in diameter, was machined from 4140 plate and heat treated to 34 to 36 HRC. Analysis (visual inspection, composite micrographs, scanning electron microscopy, and mechanical-property analysis) supported the conclusions that the alloy steel plate used in this application contained significant brittle microstructural fibering or banding. This condition produced considerable anisotropy in ductility and toughness as revealed by mechanical testing. Unfortunately, the potential effects of anisotropy were apparently neglected when this component was designed and manufactured from the plate stock, because the loading was applied in a direction that stressed the weakest planes in the material, that is, a direction normal to the fibering. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
Abstract
A failed tapered-ring sprocket locking device consisted of an assembly of four tapered rings that are retained by a series of cap screws. The middle wedge-shaped rings were pulled closer as the screws were tightened forcing the split inner ring to clamp tightly onto the shaft. One of the wedge-shaped middle rings fractured prior to having been fully torqued, preventing the sprocket from being locked to the shaft. “Woody” fracture features, as a result of decohesion between a high volume fractions of manganese sulfide stringers and the matrix, was revealed during examination. The material was revealed by chemical analysis to be resulfurized grade of carbon steel (SAE type 1144, UNS G11440) which has enhanced longitudinal tensile properties but low transverse properties. It was observed that when the fastening screws were torqued, a significant hoop stress was placed on the middle rings and it caused the failure at the large inclusion present at the minimum section thickness zone of the middle ring. It was concluded that since the material contained a high volume fraction of these inclusions, the material choice was not appropriate for this application. A nonresulfurized grade of low-alloy steel was suggested as recommendation.