Skip Nav Destination
Close Modal
By
S.P. Lynch
By
F. Elshawesh, K. Abusowa, H. Mahfud, H. Ezuber
By
Mohsen Mohammadi, Hamid Reza Salimi
By
Donghuan Liu, Xinchun Shang
By
Michelle Koul, Jennifer Gaies
By
W. M. Williams, Mark Firth
By
Friedrich Karl Naumann, Ferdinand Spies
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 85
Fasteners
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Book
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Failures of Structures and Components by Metal-Induced Embrittlement
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Book Chapter
Stress-Corrosion Cracking and Galvanic Corrosion of Internal Bolts from a Multistage Water Injection Pump
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
Abstract
Nineteen out of 26 bolts in a multistage water pump corroded and cracked after a short time in a severe working environment containing saline water, CO 2 , and H 2 S. The failed bolts and intact nuts were to be made from a special type of stainless steel as per ASTM A 193 B8S and A 194. However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where an aggressive chemistry is allowed to develop and attack local surfaces.
Book Chapter
Failure Analysis of a Gas Turbine Marriage Bolt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001830
EISBN: 978-1-62708-241-9
Abstract
An 18-MW gas turbine exploded unexpectedly after three hours of normal operation. The catastrophic failure caused extensive damage to the rotor, casing, and nearly all turbo-compressor components. Based on their initial review, investigators believed that the failure originated at the interface between two shaft sections held together by 24 marriage bolts. Visual and SEM examination of several bolts revealed extensive deterioration of the coating layer and the presence of deep corrosion pits. It was also learned that the bolts were nearing the end of their operating life, suggesting that the effects of fatigue-assisted corrosion had advanced to the point where one of the bolts fractured and broke free. The inertial unbalance produced excessive vibration, subjecting the remaining bolts to overload failure.
Book Chapter
Failure Investigation of the Wind Turbine Blade Root Bolt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Book Chapter
An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Book Chapter
Wear Failure of a 4140 Steel Bolt Because of Low Hardness
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046388
EISBN: 978-1-62708-224-2
Abstract
The bolt in a bolt and thimble assembly used to connect a wire rope to a crane hanger bracket was worn excessively. Two worn bolts, one new bolt, and a new thimble were examined. Specifications required the bolts to be made of 4140 steel heat treated to a hardness of 277 to 321 HRB. Thimbles were to be made of cast 8625 steel, but no heat treatment or hardness were specified. Analysis (visual inspection, hardness testing, and metallographic examination) supported the conclusion that the wear was due to strikingly difference hardness measurements in the bolt and thimble. Recommendations included hardening and tempering the bolts to the hardness range of 375 to 430 HRB. The thimbles should be heat treated to a similar microstructure and the same hardness range as those of the bolt. Molybdenum disulfide lubricant can be liberally applied during the initial installation of the bolts. A maintenance lubrication program was not suggested, but galling could be reduced by periodic application of a solid lubricant.
Book Chapter
An Analysis of Six Fatigue Failures in Cranes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Book Chapter
Fatigue Fracture of Modified 1035 Steel Cap Screws
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
Abstract
A drive-line assembly failed during vehicle testing. The vehicle had traveled 9022 km (5606 mi) before the failure occurred. Both the intact and fractured parts of the assembly were analyzed to determine the cause and sequence of failure. Visual examination of the assembly showed three of four bearing caps, two cap screws, and one universal-joint spider had fractured. Examination of the three fractured bearing caps and the spider showed no evidence of fatigue but showed that fracture occurred in a brittle manner. The bearing cap that was not destroyed still contained portions of the two fractured cap screws. It was found that the two cap screws failed in fatigue under service stresses. The three bearing caps and the universal-joint spider broke in a brittle manner. The properties of the material in the cap screws did not fulfill the specifications. The modified 1035 steel was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001678
EISBN: 978-1-62708-218-1
Abstract
Six galvanized high-tensile steel bolts were used to hold the wheels of a four-wheel drive vehicle. The right hand rear wheel of this vehicle detached causing the vehicle to roll and resulting in considerable damage to the body. The wheel was detached by shearing of four of the bolts and stripping the nuts from the other two bolts, which remained unbroken. SEM fractography of the fracture surfaces of the four broken bolts indicated that the failure was due to reversed bending fatigue. Optical microscopy indicated that the bolts were heat treated to a tempered martensite structure and that the nuts were manufactured from low carbon steel. The paper discusses the influence of the microstructure on the failure process the events surrounding the nature of incident and the analysis of in-service failure of the failed components utilizing conventional metallurgical techniques.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001692
EISBN: 978-1-62708-229-7
Abstract
Two blade-detachment failures in large (600 kW) wind turbine generators were investigated. In the first case, bolt failures were established as the initial failure event. A fatigue crack reached a critical length, fast fracture developed and was then arrested as the bolt unloaded. Crack growth resumed when loading increased with cracking or fracture of adjacent bolts. The problem was identified as one of insufficient preload on the bolts. In the second failure on a different unit, a retaining nut on a blade assembly split, allowing a roller bearing to slide off a shaft and a blade to separate at its attachment hub. The failure was observed to be by fatigue. It was determined that pieces of the outer retaining rib (or flange) on the bearing inner cage had fractured by fatigue and were trapped between the nut and the bearing, producing excessive cyclic loading on the nut by a wedging action as the blade pitch adjusted during a revolution. Fatigue of the rim occurred as a result of inadequate lubrication in the bearing, which led to load transfer across the rollers, onto the rim.
Book Chapter
Aging of Boiler Rivets
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001448
EISBN: 978-1-62708-229-7
Abstract
Rivets from the longitudinal seam of the terminal shell ring of a 12 year old Lancashire boiler broke off easily during examination. Cleavage fractures indicated a brittle material. Microstructure of a sectioned rivet head was typical of a normal rimming steel except the ferrite crystals contained numerous nitride needles. Their existence indicated an abnormally high nitrogen content. If such a steel is heated for a lengthy period to a temperature of that prevailing in a boiler, precipitation of the nitrides may be expected, with consequent embrittlement. In this case, embrittlement of this type was the primary cause of the breaking off of the type rivet heads. Nothing was observed in the course of the examination that suggested caustic cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001193
EISBN: 978-1-62708-229-7
Abstract
When a steam turbine was put out of service, cracks were noticed on many of the blades in the low pressure section round the stabilization bolts and perpendicular to the blade axis. The blades were made from chrome alloy steel X20-Cr13 (Material No. 1.402). When the bolts were brazed into the blades inadmissible localized overheating of the steel must have occurred, which resulted in transformation stresses and hence reduced deformability. The cracks arose as a consequence of careless brazing. Whether the cracks should be considered as stress cracks over their entire extent or partially as fatigue cracks produced by vibration in the operation of the turbine as a result of steplike growing of microcracks could not be deduced from the fracture surfaces. Microfractography showed that the cracks developed in stages.
Book Chapter
Unusual Joint Failure Steam Pipe Range
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001469
EISBN: 978-1-62708-229-7
Abstract
In a main range in a power station, steam was conveyed at a pressure of 645 psi, and a temperature of 454 deg C (850 deg F). Pipe diameter was 9 in. and the joints were of the bolted type in which a thin steel ring, serrated on both sides, was inserted between plain flanges. Thin jointing material was interposed between the serrated faces and the flanges. The first intimation of trouble was the onset of a high pitched noise audible over a radius of a quarter of a mile. The noise arose from violent lateral vibration of the serrated ring, which attained an amplitude and persisted for a sufficient number of cycles to produce an extensive system of fatigue cracks that resulted in partial disintegration of the ring. Microscopic examination of the material showed it to be a mild steel of satisfactory quality. The trouble was started by slight leakage, possibly resulting from a relaxation of the interfacial pressure on the joint faces, which eroded away the joint material locally at one face of the serrated ring. This reduced interfacial pressure at the opposite face of the ring, with resultant leakage and erosion of the joint material on this side.
Book Chapter
Cracking in a Yankee Dryer Shell
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0090276
EISBN: 978-1-62708-230-3
Abstract
Cracking was found in the heads on large Yankee dryers, large, cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessels (ASME Boiler and Pressure Vessel Code Section VIII, Rules for Construction of Pressure Vessels), used to remove moisture from sheets of tissue paper during manufacturing. The typical components consist of a cast iron shell, two cast iron concave heads, and a large cast iron internal center stay attached to journals. The heads are attached to the shell and center stay with high-strength bolts. FEA and metallurgical investigation supported the conclusion that the cracking was caused by an unexpected type of load placed on the machine, namely corrosion product buildup at the head/shell interface causing the joint to displace open. It was also found that compressive bolting loads could slightly open the head/shell interface at the periphery. Recommendations included design changes in the head/shell joint, and detailed preventive maintenance inspection procedures were also suggested.
Book Chapter
Rivet-Hole Cracks in a Steam Boiler
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001175
EISBN: 978-1-62708-231-0
Abstract
A water tube boiler with two headers and 15.5 atm working pressure became leaky in the lower part due to the formation of cracks in the rivet-hole edges. The boiler plate of 20 mm thickness was a rimming steel with 0.05% C, traces of Si, 0.38% Mn, 0.027% P, 0.035% S, and 0.08% Cu. The mean value of the yield point was 24 (24) kg/sq mm, the tensile strength 39 (38) kg/sq mm, the elongation at fracture, d10, 26 (24)%, the necking at fracture 71 (66)% and notch impact value 11.5 (9.4) kgm/sq cm (the values in brackets are for the transverse direction). The specimen from inside surface of the boiler was polished and etched with Fry-solution, which revealed parallel striations formed due to the cold bending of the plate. The zones of slip were concentrated around the rivet holes. The cracks were formed here. The structure examination proved that the cracks had taken an exactly intercrystalline path, which is characteristic for caustic corrosion cracks. It was recommended that the internal stresses be removed through annealing or alternatively lye-resistant steel should be used.
Book Chapter
Failure of Copper Rivets Due to “Gassing”
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001450
EISBN: 978-1-62708-231-0
Abstract
A locomotive type boiler was fitted with a copper firebox of orthodox construction. Flanged tube- and firehole-plates were attached to a wrapper plate by means of copper rivets. Shortly after it was put into service the fireside heads of a number of rivets broke off at different parts of the seams. By the time the investigation was begun a total of fifty heads had broken off. Repairs had been effected from time to time by fitting screwed rivets, none of which gave trouble in service. Microscopic examination confirmed the fracture path to be wholly intergranular. In the region of the fracture the grain boundaries were delineated as a near-continuous network of cavities and films of oxide. It was evident that the failure of the rivets in service was attributable to intergranular weakness in the material due to gassing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089530
EISBN: 978-1-62708-219-8
Abstract
A sand-cast steel eye connector used to link together two 54,430 kg capacity floating-bridge pontoons failed prematurely in service. The pontoons were coupled by upper and lower eye and clevis connectors that were pinned together. The eye connector was found to be cast from low-alloy steel conforming to ASTM A 148, grade 150-125. The crack was found to have originated along the lower surface initially penetrating a region of shrinkage porosity. It was observed that cracking then propagated in tension through sound metal and terminated in a shear lip at the top of the eye. The fracture of the eye connector was concluded to have occurred by tensile overload because of shrinkage porosity. Sound metal was ensured by radiographic examination of subsequent castings.
Book Chapter
Failure of a Structural Bolt Due to Reversed-Bending Fatigue
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047113
EISBN: 978-1-62708-219-8
Abstract
A portion of a 19 mm (0.75 in.) diam structural steel bolt was found on the floor of a manufacturing shop. This shop contained an overhead crane system that ran on rails supported by girders and columns. Inspection of the crane system revealed that the bolt had come from a joint in the supporting girders and could be considered one of the principal fasteners in the track system. Analysis (visual inspection, metallographic exam, and hardness testing) supported the conclusions that fatigue induced by the overhead movement of the crane produced failure of the bolt. The bolt was deficient in strength for the cyclic applied loads in this case and probably was not tightened sufficiently. Recommendations included removing the remaining bolts in the crane support assembly and replacing them with a higher-strength, more fatigue-resistant bolt, for example, SAE grade F, 104 to 108 HRB. The bolts should be tightened according to the specifications of the manufacturer, and the system should be periodically inspected for correct tightness.
1