Skip Nav Destination
Close Modal
By
Pierre Dupont
By
Zhi-Qiang Yu, Zhen-Guo Yang
By
R.R. Bhat, Vaisakhi Nandi, V. Manohara, S.V. Suresh
By
Tomasz Didenko, Wesley D. Pridemore
By
Friedrich Karl Naumann, Ferdinand Spies
By
H.W. Walton
By
Friedrich Karl Naumann, Ferdinand Spies
By
F.R. Hutchings
By
Friedrich Karl Naumann, Ferdinand Spies
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 28
Rolling-element bearings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Book Chapter
Failures of Rolling-Element Bearings and Their Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Book Chapter
Failure Analysis of Fatigue Fracture on the Outer Ring of a Cylindrical Roller Bearing in an Air Blower Motor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Book Chapter
Case Study on Failure of Ball Bearing of an Aeroengine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Book Chapter
Electrical Fluting Failure of a Tri-Lobe Roller Bearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
Abstract
A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used in bearings to minimize the effects of orbital slippage and rolling-contact fatigue. The damaged areas were examined under a scanning electron microscope, which revealed a high density of microcraters, characteristic of local melting and material removal associated with bearing currents. Investigators also examined the effect of electrical discharge on crater dimensions and density and the role that thermoelectric voltage potentials may have played.
Book Chapter
True Brinelling of Ball-Bearing Raceways During Ultrasonic Cleaning
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047956
EISBN: 978-1-62708-235-8
Abstract
Randomly selected dictating-machine drive mechanisms, which contained small ball bearings, were found to exhibit unacceptable fluctuations in drive output during the early stages of production. It was indicated that the bearing raceways were being true brinelled before or during installation of the bearings. The preinstallation practices and the procedures for installing the bearings were carefully studied. It was revealed that during one preinstallation step, the lubricant applied by the bearing manufacturer was removed and the bearing was relubricated with another type of lubricant prior to which the bearings were ultrasonically cleaned in trichloroethylene to ensure extreme cleanness. Equally spaced indentations resembling true brinelling were revealed by careful examination of the bearing raceways. It was concluded that the ultrasonic energy transmitted to the balls brinelled the raceways enough to cause fluctuations in machine output. Solvent-vapor cleaning was employed as a corrective technique for removing bearing lubricant.
Book Chapter
Poorly Drawable Steel Wire for Ball Bearings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001258
EISBN: 978-1-62708-235-8
Abstract
A drawing plant which processed steel wire of designation 105 Cr 2 for ball bearings had losses due to crack formation and wire breakage during drawing. To establish the reason for the breakage, seven fractures were submitted for investigation with contiguous wire segments on both sides of the fracture of 300 mm each. Missing in the lamellar surface structure, with the exception of the remnants of a coarse network, were the pre-eutectically precipitated carbides to be expected in this steel. Surrounding the ferritic region in the surface structure, a ring of lamellar pearlite is seen, which turns into the granular annealed structure towards the core. The described structural phenomena were noted in all of the seven fracture regions. Their intensity always decreased with increasing distance from the fracture. Surface decarburization caused the formation of lamellar pearlite during annealing. This investigation further revealed that the localized decarburization and pearlite formation was present already in the rolled wire in uneven distribution over the entire coil length.
Book Chapter
Galling Wear on a Steel Inner Cone of a Roller-Bearing Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Book Chapter
Wear Failure of an Antifriction Bearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092101
EISBN: 978-1-62708-234-1
Abstract
An antifriction bearing made from a nylon/ polyethylene blend failed. The bearing came into contact with a steel shaft. Investigation (visual inspection and 417X images) supported the conclusion that movement of the shaft against the bearing caused abrasion due to fine iron oxide particles. No recommendations were made.
Book Chapter
Failure of Large Screen Spherical Bearing-Crushed Stone
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001740
EISBN: 978-1-62708-234-1
Abstract
The contamination of lubrication with powdered stone resulted in progressive wear of the internal surfaces of a bearing. Because of the motion of rollers, the inner race exhibited an unusual cyclic washboard wear pattern. Because of a lack of bearing conformity, wear progressed into severe coarse-grain spalling.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001741
EISBN: 978-1-62708-234-1
Abstract
Butterfly-shaped microstructural features in tempered martensite in an otherwise clean steel suggested that overloading led to premature spalling of a coal-crushing plant taper bearing. Extensive rolling contact fatigue occurred because of the overload condition. The crusher was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047975
EISBN: 978-1-62708-225-9
Abstract
An aircraft was grounded when illumination of the transmission oil-pressure light and an accompanying drop in pressure on the oil-pressure gage was reported by the pilot. No discrepancy in the bearing assemblies and related components was revealed by teardown analysis of the transmission. The center bearing of the transmission input-shaft ball-bearing stack had a broken cage and one ball was found to have been split into several pieces. Several scored balls and flaking damage in the raceways of the inner and outer rings was observed. The origin (area in rectangle) was oriented axially in the raceway and was flanked by areas of markedly different-textured flaking damage. Stringers of nonmetallic inclusions were revealed at the origin during metallographic examination of a section parallel to the axially oriented origin. Thus it was concluded that the failure was caused by contact fatigue mechanism (flaking) activated by the subsurface nonmetallic inclusions.
Book Chapter
Broken Inner Rings of Spherical Roller Bearings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001191
EISBN: 978-1-62708-225-9
Abstract
Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture originated from the middle flange. In all of the three rings one flank showed heavy wearing and scouring. The cracks started from the edge of this flank with the cylindrical mantle surface of the middle flange. The cracking resembled fatigue cracking. However, in a fine-grained hardened steel such as this, fracture faces due to stress-cracking and overload fracture look the same. Metallographic examination showed the failure of the rings was a result of repeated heating and rapid cooling of the surface due to the grinding of the bearings on one flank of the middle flange. The stress-cracks (grindcracks) spread in steps which finally led to the breaking off of parts from the middle flange and complete failure of the rings.
Book Chapter
Failure of Bearings Because of Wear of Labyrinth Seals
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047998
EISBN: 978-1-62708-225-9
Abstract
The drive-shaft hanger bearings failed after 300 to 400 h in service. The shaft, supported by labyrinth-sealed single row radial ball bearings of ABEC-1 tolerances, was made of aluminum 2024-T3 tubing (2.5 cm diam and 1.2 mm wall thickness). The bearings were lubricated with a paste-type mineral-oil lubricant (containing molybdenum disulfide and polytetrafluoroethylene particles) or grease conforming to MIL-G-81322 (containing thickening agent and synthetic hydrocarbons) and had two-piece spot-welded retainers. On visual examination, the balls were observed to be embedded in the inner-ring raceway which had been softened by the elevated temperatures reached during the failure. Broken retainers and worn and bent out of shape seals were found. Penetration of gritty particles, water and other corrosive agents and leakage of lubricant out of the bearing permitted by the worn seals was observed. It was concluded that overheating was caused by lubricant flow was permitted by wear of the labyrinth seals. Positive rubbing seals and MIL-G-81322 grease lubricant were found to have longer life than those with the labyrinth seals and mineral-oil-paste lubricant on testing under simulated environmental conditions and were installed as a corrective measure. Importance of dirt free supply and drainage of oil was discussed.
Book Chapter
Pitting Failure of Ball Bearings in an Electric Motor by Static Electrical Discharges
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047935
EISBN: 978-1-62708-225-9
Abstract
Ball bearings made of type 440C stainless steel hardened to 60 HRC and suspected as the source of intermittent noise in an office machine were examined. A number of spots on the inner-ring raceway were revealed by scanning electron microscopy. The metal in the area around the spot was evidenced to have been melted and welded to the inner-ring raceway. It was revealed by randomly spaced welded areas on the raceways that the welding was the result of short electrical discharges between the bearing raceways and the balls. The use of an electrically nonconductive lubricant in the bearings was suspected to have caused the electric discharge by accumulation and discharge of static charge. The electrical resistance between the rotor and the motor frame lubricated with electrically conductive grease and the grease used in the current case was measured and compared to confirm the fact the currently used grease was nonconductive. It was concluded that the pits were formed by momentary welding between the ball and ring surfaces. The lubricant was replaced by electrically conductive grease as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047939
EISBN: 978-1-62708-225-9
Abstract
Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone and roller) were revealed to be uniformly electrolytically etched by visual examination. The action similar to anodic etching was believed to have occurred as a result of stray currents in the electric motor (not properly grounded) and the presence of an electrolyte (moisture) between the cup and roller surfaces of the bearing. As a remedial action, the bearing was insulated for protection from stray currents by grounding of the motor and the moisture was kept out by sealing both bearings in the assembly.
Book Chapter
A Survey of the Causes of Failure of Rolling Bearings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
Abstract
Factors which may lead to premature roller bearing failure in service include incorrect fitting, excessive pre-load during installation, insufficient or unsuitable lubrication, over-load, impact load vibration, excessive temperature, contamination by abrasive matter, ingress of harmful liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
Abstract
The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing was installed in contact with the inner ring for accurate positioning of the microdrum. The particles contained in residue achieved after cleaning of the grease on bearings with a petroleum solvent were attracted by a magnet and detected under a SEM (SEM) to be flaked off particles from the outer raceway surface. Smearing, true-brinelling marks, and evidence of flaking caused by the shifting of the contact area (toward one side) under axial load, was revealed by SEM investigation of one side of the outer-ring raceway. The true-brinelling marks on the raceways were found to be caused by excessive loading when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001900
EISBN: 978-1-62708-225-9
Abstract
Incorrect grounding of an electric motor resulted in electric current passing through a 52100 steel ball bearing and caused multiple arcing between the rolling elements. The multiple arcing developed a pattern on the outer race known as ‘fluting’. A section of ball race outer showed the distinct banding (fluting) resulting from spark discharges while the bearing was rotating. The severe distress of the surface resulted in unacceptable levels of vibration. An SEM photograph of the banded regions showed smoothing of the asperities from continued operation is evident. In the craters the residue of partial melting was seen.
Book Chapter
Destroyed Needle Bearing of a Packing Machine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001243
EISBN: 978-1-62708-225-9
Abstract
A needle bearing from a filling and seating machine for milk cartons became unusable due to corrosion and fracture of a ring after only four weeks of operation of the machine in a Finnish milk packing plant. These bearings were subject to corrosion by water condensates in this type of environment because of constant temperature changes, and they normally are replaced after eight months. The bearings were lubricated by a molybdenum sulfide paste. Judging by their structure the needles probably consisted of ball bearing steel. They showed corroded initial cracks of the pitting type, i.e., shear-fatigue fractures due to excessive surface pressure. The needles too were overstressed by compression. It seemed that the higher pressure necessary for the pressing of thicker paper accelerated the corrosion, which lead to the crack initiations of the parts and possibly also to impaired lubrication. The machine manufacturer therefore switched to bearings with shells of a complex bronze.
1