Skip Nav Destination
Close Modal
By
Katsumi Sakaguchi, Masakatsu Kubo
By
C. F. Jenkins, D. L. Doman
By
B.V. Krishna, R.K. Sidhu
By
A.H. Khan
By
Hasan Shaikh, H.S. Khatak, J.B. Gnanamoorthy
By
P. Muraleedharan, J.B. Gnanamoorthy
By
G. Mark Tanner
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17
Coolants and cooling systems
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.
Book Chapter
Failure by Blowout of Aluminum Alloy 6061-T6 Connector Tubes From a Water-Cooling System
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047080
EISBN: 978-1-62708-235-8
Abstract
Several of the aluminum alloy 6061-T6 drawn seamless tubes (ASTM B 234, 2.5 cm (1.0 in.) OD with wall thickness of 1.7 mm (0.065 in.)) connecting an array of headers to a system of water-cooling pipes failed. The tubes were supplied in the O temper. They were bent to the desired curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported the conclusions that bending of the connector tubes in the annealed condition induced critical strain near the neutral axis of the tube, which resulted in excessive growth of individual grains during the subsequent solution treatment. Recommendations included bending the connector tubes in the T4 temper as early as possible after being quenched from the solution temperature. The tubes should be stored in dry ice after the quench until bending can be done. The tubes should be aged immediately after being formed. Flattening and slow-bend tests should be specified to ensure that the connector tubes had satisfactory ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
Book Chapter
Crack Propagation of Sirocco Fan
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001576
EISBN: 978-1-62708-219-8
Abstract
Macrofractographs of the fracture surface from a multibladed fan showed that cracks started at the corner where bending stress was concentrated and propagated through the blade by fatigue. Peak stress at the monitoring position was less than 10 MPa. To simulate crack growth, the rotor was repeatedly deformed by a hydraulic fatigue tester. Comparison of striations of the failed blade with that of the tested one revealed the failed blade was loaded with more than 30 MPa of stress. These tests confirmed that the rotor and blades had sufficient strength to withstand up to 3x the stress of normal operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure.
Book Chapter
Biologically Influenced Corrosion of Stainless Steel Welds by Water
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001683
EISBN: 978-1-62708-234-1
Abstract
Corrosion in a closed-loop cooling water system constructed of austenitic stainless steel occurred during an extended lay up of the system with biologically contaminated water. The characteristics of the failure were those of microbiologically influenced corrosion (MIC). The corrosion occurred at welds and consisted of large subsurface void formations with pinhole penetrations of the surfaces. Corrosive attack initiated in the heat affected zones of the welds, usually immediately adjacent to fusion lines. Stepwise grinding, polishing, and etching through the affected areas revealed that voids generally grew in the wrought material by uniform general corrosion. Tunneling or worm-holing was also observed, whereby void extension occurred by initiating daughter voids probably at flaws or other inhomogeneities. Selective attack occurred within the fusion zone, i.e., within the cast two-phase structure of the weld filler itself. The result was a void wall which consisted of a rough and porous ferritic material, a consequence of preferential attack of the austenitic phase and slightly lower rate of corrosive attack of the ferrite phase. The three-dimensional spongy surface was studied optically and with the scanning electron microscope.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001442
EISBN: 978-1-62708-221-1
Abstract
The impeller of a 4 ft. diam extraction fan driven by a 120 hp motor at 1,480 rpm. disrupted suddenly. The majority of the vanes had become detached where they were welded to the plates. At other locations, separation of the vanes was accompanied by tearing of the adjacent plate, failure being initiated at the weld fillets of the inner end of the vanes. An unusual feature was that the blades disclosed regions having a pronounced striated and stepped appearance. The etched microstructure was typical of a low carbon rolled plate having the usual banded appearance. A cross section through the fillet welds and zone showed lamellar tearing, which confirmed that failure had occurred in weld metal adjacent to the fusion face of the fillet to the vane. Results of the investigation indicated that the primary cause of failure of the impeller was the development of fatigue cracks from the unwelded roots of the fillet welds, by which the vanes were attached to the supporting plates. The impeller would have shown increased resistance to fatigue crack initiation if the T joint between the vanes and plates had been of the full penetration type.
Book Chapter
Aircraft Attachment Bolt Failure
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047720
EISBN: 978-1-62708-217-4
Abstract
Airfoil-shape impingement cooling tubes were fabricated of 0.25 mm (0.010 in.) thick Hastelloy X sheet stock, then pulse-laser-beam butt welded to cast Hastelloy X base plugs. Each weldment was then inserted through the base of a hollow cast turbine blade for a jet engine. The weldments were finally secured to the bases of the turbine blades by a brazing operation. One of the laser beam attachment welds broke after a 28-h engine test run. Exposure of the fracture surface for study under the electron microscope revealed the joint had broken in stress rupture. Failure was caused by tensile overload from stress concentration at the root of the laser beam weld, which was caused by the sharp notch created by the lack of full weld penetration. Radiographic inspection of all cooling-tube weldments was made mandatory, with rejection stipulated for joints containing subsurface weld-root notches. In addition, all turbine blades containing cooling-tube weldments were reprocessed by back-brazing. Back brazed turbine blades were reinstalled in the engine and withstood the full 150-h model test run without incident.
Book Chapter
Catastrophic Failure of a Fan in a Diesel Engine Cooler
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001612
EISBN: 978-1-62708-218-1
Abstract
The fan used to cool a diesel engine fractured catastrophically after approximately 100 h of operation. The fan failed at a spider, which was resistance spot welded to a shim placed between two circular spiders of 3 mm thickness. The detailed analysis of the fracture indicated that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture during operation. The propensity to crack initiation and failure was accentuated by improper cleaning of the surfaces prior to welding and to inadequate nugget-to-sheet edge distance.
Book Chapter
Corrosion of Copper Cooling-Water Tubing in a Heat Exchanger
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Book Chapter
Intergranular Fracture of Steam Generator Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090881
EISBN: 978-1-62708-229-7
Abstract
A power plant using two steam generators (vertical U-tube and shell heat exchangers, approximately 21 m (68 ft) high with a steam drum diameter of 6 m (20 ft)) experienced a steam generator tube rupture. Each steam generator contained 11,012 Inconel alloy 600 (nickel-base alloy) tubes measuring 19 mm OD, nominal wall thickness of 1.0 mm (0.042 in.), and average length of 18 m (57.75 ft). The original operating temperature of the reactor coolant was 328 deg C (621 deg F). A tube removal effort was conducted following the tube rupture event. Investigation (visual inspection, SEM fractographs, and micrographs) showed evidence of IGSCC initiating at the OD and IGA under ridgelike deposits that were analyzed and found to be slightly alkaline to very alkaline (caustic) in nature. Crack oxide analysis indicated sulfate levels in excess of expected values. The analysis supported the conclusion that that the deposits formed at locations that experienced steam blanketing or dryout at the higher levels of the steam generators. Recommendations included steam generator water-chemistry controls, chemical cleaning, and reduction of the primary reactor coolant system temperature.
Book Chapter
Failure of a Service Water Pump Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001370
EISBN: 978-1-62708-215-0
Abstract
A service water pump in a nuclear reactor failed when its shaft gave way. The fracture originated in the threaded portion of the sleeve nut on the drive-end side of the shaft. Results of the failure analysis showed that the cracking initiated at the thread root as a result of corrosion fatigue. Crack propagation occurred either by corrosion or mechanical fatigue. Evidence was found indicating high rotary bending stresses on the shaft during operation. The nonstandard composition of the En 8 steel used in the shaft and irregular maintenance reduced the life of the shaft. Recommendations included use of a case-hardened En 8 steel with the correct composition and regular maintenance of the pump.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
Abstract
Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified.
Book Chapter
Stress-Corrosion Cracking in a Stainless Steel Emergency Injection Pipe in a Nuclear Reactor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001343
EISBN: 978-1-62708-215-0
Abstract
A section of type 304 stainless steel pipe from a stand by system used for emergency injection of cooling water to a nuclear reactor failed during precommissioning. Leaking occurred in only one spot. Liquid penetrant testing revealed a narrow circumferential crack. Metallographic examination of the cracked area indicated stress-corrosion cracking, which had originated at rusted areas that had formed on longitudinal scratch marks on the outer surface of the pipe. The material was free from sensitization, and there was no significant amount of cold work. It was recommended that the stainless steel be kept rust free.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001360
EISBN: 978-1-62708-215-0
Abstract
A blade from the engine cooling fan of a pickup truck fractured unexpectedly. The blade was made from type 301 stainless steel in the extra full hard tempered condition with a hardness of 47 HRC. Failure analysis indicated that the blade fractured in three modes: crack initiation, fatigue crack propagation, and final rapid fracture in a ductile manner The fatigue crack originated near a rivet hole.
Book Chapter
Stress-Corrosion Cracking of a Brass Tube in a Generator Air Cooler Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001045
EISBN: 978-1-62708-214-3
Abstract
A failure analysis was conducted on brass alloy 270 heat exchanger tubes that were pulled from a unit used to cool oil for the speed regulators and thrust bearings of a hydroelectric power plant. The tubes began to leak after approximately 5.5 years of service. Macrophotography and scanning electron microscopy were used to examine samples from the tubes. An energy-dispersive electron microprobe analysis was carried out to evaluate the zinc distribution. Results showed that the failure was due to dezincification. Replacement of the tubes with new tubes fabricated from a dezincification-resistant alloy was recommended.