Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Brazing torch tips
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.