Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Bending machines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
Abstract
A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear to have had significant effects on the fracture. Recommendations included carefully and properly aligning the flange surface with the roll holder to achieve uniform distribution of the load. Also, a more ductile metal, such as steel or ductile iron, would be more suitable for this application and would require less exact alignment.