Skip Nav Destination
Close Modal
By
Iván Uribe Pérez, Tito Luiz da Silveira, Tito Fernando da Silveira, Heloisa Cunha Furtado
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 138
Power plant equipment
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
Abstract
Radiant tubes that failed prematurely in an ethylene cracking furnace were analyzed to determine the cause of their early demise. The tubes were made from austenitic heat-resistant steel and cracked along their longitudinal axis. New and used tubes were compared using scanning electron microscopy, energy dispersive x-ray spectrometry, and mechanical property testing. This provided critical information and revealed that improper coking and decoking had removed the protective oxide layer (Cr 2 O 3 ) that normally prevents coke deposits from forming on exposed surfaces. Without this layer, coke readily accumulates on the surface of the tubes, fueling carbon diffusion into the metal and a corresponding degradation in microstructure and loss of ductility at high temperatures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
Abstract
Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures. In general, the more randomly distributed the nodules, the less effect they have on structural integrity. In the cases examined, the nodules were found to be organized in planar arrays, indicating they might have an effect on material properties. Closer inspection, however, revealed that the magnitude of the effect depends on the relative orientation of the planar arrangement and principle tensile stress. For normal orientation, the effect of embrittlement tends to be most severe. Conversely, when the orientation is parallel, the nodules have little or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001825
EISBN: 978-1-62708-241-9
Abstract
A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress corrosion cracking, and fatigue fracture. Investigators concluded that the primary failure mechanism was fatigue fracture, although either of the other mechanisms may have eventually caused the tube to fail in the absence of fatigue.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
Abstract
A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
Abstract
The failure of T12 reheater tubes that had been in service for only 3000 h was investigated. The thickness of the tubes was visibly reduced by heavy oxidation corrosion on the inner and outer walls. The original pearlite substrate completely decomposed. Uniform oxide scale observed on the inner wall showed obvious vapor oxidation corrosion characteristics. Corrosion originated in the grain boundary, and selective oxidation occurred due to ion diffusion in the substrate. The layered oxide scale on the inner wall is related to the different diffusion rates for different cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
Abstract
A brackish water pump impeller was replaced after four years of service, while its predecessor lasted over 40 years. The subsequent failure investigation determined that the nickel-aluminum bronze impeller was not properly heat treated, which made the impeller susceptible to aluminum dealloying. The dealloying corrosion was exacerbated by erosion because the pump was slightly oversized. The investigation recommended better heat treating procedures and closer evaluation to ensure that new pumps are properly sized.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0046953
EISBN: 978-1-62708-220-4
Abstract
A portion of the wall of a reactor vessel used in burning impurities from carbon particles failed by localized melting. The vessel was made of Hastelloy X (Ni-22Cr-9Mo-18Fe). Considering the service environment, melting could have been caused either by excessive carburization (which would have lowered the melting point of the alloy markedly) or by overheating. A small specimen containing melted and unmelted metal was removed from the vessel wall and examined metallographically. It was observed that the interface between the melted zone and the unaffected base metal was composed of large grains and enlarged grain boundaries. An area a short distance away from the melted zone was fine grained and relatively free of massive carbides. This evidence supported the conclusion that the vessel failed by melting that resulted from heating to about 1230 to 1260 deg C (2250 to 2300 deg F), which exceeded normal operating temperatures, and carburization was not the principal cause of failure. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001181
EISBN: 978-1-62708-220-4
Abstract
A forged pressure vessel made from high temperature austenitic steel X8Cr-Ni-MoVNb 16 13 K (DIN 1.4988) failed. The widest part of the burst had fine cracks on the internal wall running longitudinally. When the internal wall was cleaned, numerous even finer cracks were exposed. On the fracture surfaces in this region an irregularly formed zone was visible in the direction of the internal wall and a fibrous oriented fracture zone towards the external wall. The fracture was typical of stress-corrosion cracking in austenitic steels. Vanadium trichloride was present and tensile stresses were of necessity set up by the internal pressure. Stress-corrosion cracking does not occur if one of the basic requirements is lacking. Because the chloride agent and tensile stresses were inevitably present, the only possible way to prevent future reoccurrence is to forge the entire pressure vessel from a material immune to stress-corrosion cracking or to use interchangeable linings of such a material. A nickel alloy could be considered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001002
EISBN: 978-1-62708-229-7
Abstract
During the inspection of a boiler containing cracks at the superheater header connection, cracking also was detected within the main steam drum. This was fabricated from a Mn-Mo-V low-alloy steel. It operated with water and saturated steam at approximately 335 deg C. Cracking was detected at the nozzles connecting the tubes for the entry of steam and hot water to the drum, at the downcomers, and at the connection to the safety valve. All cracks had a similar morphology, running in a longitudinal direction along the drum from the cutouts in the shell. All the cracks had developed under the influence of the hoop stress and were associated with the locally increased stress levels relating to the cutouts at nozzle and pipe connections. At their ends the cracks were filled with corrosion products, and their surfaces were seen to be very irregular. The process of crack growth was not due to fatigue only but can most probably be attributed to corrosion fatigue. The boiler steam drum design should be reviewed to reduce the local level of stress at the shell-nozzle connections.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048814
EISBN: 978-1-62708-229-7
Abstract
A nuclear steam-generator vessel constructed of 100-mm thick SA302, grade B, steel was found to have a small leak. The leak originated in the circumferential closure weld joining the transition cone to the upper shell. The welds had been fabricated from the outside by the submerged arc process with a backing strip. The backing was back gouged off, and the weld was completed from the inside with E8018-C3 electrodes by the shielded metal arc process. Striations of the type normally associated with progressive or fatigue-type failures including beach marks that allowed tracing the origin of the fracture to the pits on the inner surface of the vessel were revealed. Copper deposits with zinc were revealed by EDS examination of discolorations. Pitting was revealed to have been caused by poor oxygen control in the steam generators and release of chloride into the steam generators. It was concluded by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride. Copper ions in solution should be eliminated or minimized.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
Abstract
The maximum life of base-loaded headers and piping is not possible to be predicted until they develop microcracking. The typical elements of a periodic inspection program after the occurrence of the crack was described extensively. Cracks caused by creep swelling in the stub-to-header welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat to tube seat were revealed by surface inspection. Cracks were found to originate from inside the header, extend axially in the tube penetrations and radially from those holes into the ligaments. Cracks in 94 locations, ranging from small radial cracks to full 360Ý cracks were revealed by dye-penetrant inspection. The unit was operated under reduced-temperature conditions and with less load cycling than previously until a redesigned SA335-P22 header was installed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048850
EISBN: 978-1-62708-229-7
Abstract
Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
Abstract
After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300 (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x micrographs etched with H4OH, and 500x micrographs) supported the conclusions that the castings and bolts failed by SCC caused by the combined effects of dezincification damage and applied stresses. Recommendations included replacing the castings with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze).
1