Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Rocket motors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001031
EISBN: 978-1-62708-214-3
Abstract
Pinhole defects were found in a main combustion chamber made from NARloy-Z after an unexpectedly short time in service. Analysis indicated that the throat section of the liner had been exposed to very severe environmental conditions of high temperature and high oxygen content, which caused ductility loss and grain-boundary separation. The excessive oxygen content in the liner was attributed to diffusion from an oxygen-rich environment that had resulted from nonuniform mixing of propellants. The internal oxygen embrittled the alloy and reduced its thermal conductivity, which resulted in a higher hot-gas wall temperature and associated degradation of mechanical properties.