Skip Nav Destination
Close Modal
By
B.V. Krishna, A. Verma
By
G.H. Walter, R.M. Hendrickson, R.D. Zipp
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Diesel engines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0047328
EISBN: 978-1-62708-231-0
Abstract
Cracks formed on cylinder inserts from a water-cooled locomotive diesel engine, on the water side in the neck between the cylindrical part and the collar. Cracks were revealed by magnetic-particle inspection. As a rule, several parallel cracks had appeared, some of which were very fine. The part played by corrosion in the formation of the cracks was demonstrated with the help of metallographic techniques. The surface regions of the cracks widened into funnel form, which is a result of the corrosive influence of the cooling water. Actual corrosion pits could not be found indicating that the vibrational stresses had a greater share in the damage than the corrosive influence. Cracks appeared initially only in those engines in which no corrosion inhibitor had been added to the cooling water. The cracking was caused by corrosion fatigue. The combined presence of a corrosive medium and cyclical operating stress was needed to cause cracks. No cracks appeared when corrosion inhibitor was added to the cooling water.
Book Chapter
Fatigue Failure of a Diesel Engine Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001418
EISBN: 978-1-62708-231-0
Abstract
The crankshaft of a six cylinder, 225-hp diesel engine driving a small locomotive was examined. About nine months after installation a fall in oil pressure was traced to damage to No. 5 crank pin bearing. A small lip present on one side of the discontinuity apparently served to scrape the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure. Microscopic examination revealed that the pin had been hard chromium plated and that the plating followed the curved edge of the outer extremity of the defect. This crank pin contained an inherent defect in the form of a slag inclusion or crack situated at the surface. That the crack only showed itself after a period of service suggests that initially it may have been slightly below the surface of the machined pin and some slight extension outwards took place in service.
Book Chapter
Failure Analysis of Cylinder Clamping Rods in Diesel Engines
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001582
EISBN: 978-1-62708-233-4
Abstract
This article discusses the failure of cylinder clamping rods in single cylinder diesel engines. The AISI 4140 hardened and tempered steel clamping rods were failing after 200 to 250 h of operation. The fatigue failures initiated at the root of the last thread on the clamping rod that was engaged in a blind hole in the cylinder block. The failures were caused by loose tolerances on the threads that resulted in a non-uniform distribution of load. The load was concentrated on the last threads to engage, thus causing fatigue crack nucleation at the thread root and propagation until the rod broke by overload. Changing the tolerance on the threads virtually eliminated the fatigue problem.
Book Chapter
Anomalous Fractures of Diesel Engine Bearing Cap Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.