Skip Nav Destination
Close Modal
By
Joseph Maciejewski, Burak Akyuz
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Tough-pitch copper
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Stress Corrosion Cracking of Tough Pitch Copper in a Bolting Application
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
Abstract
Copper electrical feedthrough pins used in a bolting application in a refrigeration compressor had functioned without failure for years of production and thousands of units. When some of the pins began to fail, an investigation was conducted to determine the cause. Visual examination revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within the sealed compressor chamber. A unique combination of applied stress, residual stress, stress riser, and grain size helped isolate the failure mechanism to a single production lot of material.
Book Chapter
Failure of Copper Rivets Due to “Gassing”
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001450
EISBN: 978-1-62708-231-0
Abstract
A locomotive type boiler was fitted with a copper firebox of orthodox construction. Flanged tube- and firehole-plates were attached to a wrapper plate by means of copper rivets. Shortly after it was put into service the fireside heads of a number of rivets broke off at different parts of the seams. By the time the investigation was begun a total of fifty heads had broken off. Repairs had been effected from time to time by fitting screwed rivets, none of which gave trouble in service. Microscopic examination confirmed the fracture path to be wholly intergranular. In the region of the fracture the grain boundaries were delineated as a near-continuous network of cavities and films of oxide. It was evident that the failure of the rivets in service was attributable to intergranular weakness in the material due to gassing.