Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Electrical wires and cables
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001674
EISBN: 978-1-62708-234-1
Abstract
Accelerated aging tests on detonator assemblies, to verify the compatibility of gold bridgewire and Pd-In-Sn solder with the intended explosives, revealed an unusual form of corrosion. The tests, conducted at 74 deg C (165 deg F) and 54 deg C (130 deg F), indicated a preferential attack of the gold. To investigate the problem, a matrix of test units was produced and analyzed. Scanning electron microscopy, EDX analysis, and x-ray diffraction techniques were used to determine the extent of the corrosion and identify the corrosion products. The results indicated that the preferential attack of the gold was due to HCN formed by decomposition of the explosive powder at high temperatures. Other associated reactions were also observed including the subsequent attack of the solder by the gold corrosion product and degradation of the plastic header.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0049838
EISBN: 978-1-62708-222-8
Abstract
An electron probe microanalyzer was applied to the study of service failures (due to severe heating) of aluminum wire connections in residential electrical circuits. Perturbed regions in which the composition underwent a change during the failure were revealed by optical and scanning electron microscopy of the contacts. A sequence of iron-aluminum compositions that shift from the pure aluminum of the wire to the nearly pure iron of the screw was revealed by analyses of two distinct layers formed on the aluminum/iron region. The compositions were found to correspond to specific intermetallic compounds found in the aluminum-iron phase diagram. Similar compositional variations were noted at the aluminum/brass interface. It was concluded that the failure of the electrical junction due to extreme heating was related to the formation of intermetallic compounds at the current carrying interfaces. These intermetallics were established to have a high resistance causing significant resistive heating.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001385
EISBN: 978-1-62708-215-0
Abstract
Three instances involving the failure of aluminum wiring at the service entrance to single-family homes are discussed. Arcing led to a fire which severely damaged a home in one case. In a second, the failure sequence was initiated by water intrusion into the service entrance electrical box during construction of the home. In the third, failure was caused by a marginal installation. Strict adherence to all applicable electrical codes and standards is critical in the case of aluminum wiring. Electrical components not specifically designed for aluminum must never be used with this type of wiring. All doors, panels and similar portions of electrical boxes should be secured to prevent damage to surroundings in the event of an electrical fault. If symptoms of arcing are observed, professional service should be sought. The latest designs of connectors for use with aluminum wiring are less susceptible to deviations in installation practice.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001124
EISBN: 978-1-62708-214-3
Abstract
Several wires in aluminum conductor cables fractured within 5 to 8 years of, service in Alaskan tundra. The cables were comprised of 19-wire strands; the wires were aluminum alloy 6201-T81. Visual and metallographic examinations of the cold-upset pressure weld joints in the wires established that the fractures were caused by fatigue loading attributable to wind/thermal factors at the joints. The grain flow at the joints was transverse to the wire axis, rendering the notches of the joints sensitive to fatigue loading. An additional contributory factor was intergranular corrosion, which assisted fatigue crack initiation/propagation. The failure was attributed to the departure of conductor quality from the requirements of ASTM B 398 and B 399, which specify that “no joints shall be made during final drawing or in the finished wire” and that the joints should not be closer than 15 m (50 ft). The failed cable did not meet either criterion. It was recommended that the replacement cable be inspected for strict compliance to ASTM requirements.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001125
EISBN: 978-1-62708-214-3
Abstract
An 1100 aluminum alloy connector of a high-tension aluminum conductor steel-reinforced (ACSR) transmission cable failed after more than 20 years in service, in a region of consider able industrial pollution. The steel core was spliced with a galvanized 1020 carbon steel sheath. Visual examination showed that the connector had undergone considerable plastic deformation and necking before fracture. The steel sheath was severely corroded, and the steel splice was pressed off-center in the axial direction inside the connector. Examination of the fracture surface and micro-structural analysis indicated that the failure was caused by mechanical overload, which occurred because of weakening of the steel support cable by corrosion inside the fitting. The corrosion was ascribed to defective assembly of the connector which allowed moisture penetration.