Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Electrical contacts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
Abstract
Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard seagoing vessels. In this service they were sheltered from the weather but subject to indirect exposure to the sea air. About 50% of the contact-finger retainers failed after five to eight months of service aboard ship. Investigation (visual inspection, 250x images etched with equal parts NH4OH and H2O2, emission spectrographic analysis, and stereoscopic views) supported the conclusion that the cracking was produced by stress corrosion as the combined result of: residual forming and service stresses; the concentration of tensile stress at outer square corners of the pierced slots; and preferential corrosive attack along the grain boundaries as a result of high humidity and occasional condensation of moisture containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy C64700.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001389
EISBN: 978-1-62708-215-0
Abstract
During routine quality control testing, small circuit breakers exhibited high contact resistance and, in some cases, insulation of the contacts by a surface film. The contacts were made of silver-refractory (tungsten or molybdenum) alloys. Infrared analysis revealed the film to be a corrosion layer that resulted from exposure to ammonia in a humid atmosphere. Simulation tests confirmed that ammonia was the corrodent. The ammonia originated from the phenolic molding area of the plant. It was recommended that fumes from molding areas be vented outside the plant and that assembly, storage, and calibration areas be isolated from molding areas.