Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 29
Structural steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0045987
EISBN: 978-1-62708-221-1
Abstract
A support arm on a front-end loader failed in a brittle manner while lifting a load. The arm had a cross section of 50 x 200 mm (2 x 8 in.). Material used for the arm was hot-rolled ASTM A572, grade 42 (type 1), steel, which exhibited poor impact properties in the as-rolled condition and had a ductile-to-brittle transition temperature exceeding 93 deg C (200 deg F). This transition temperature was much too high for the application. It was recommended that a modified ASTM A572, grade 42 (0.15% C max), type 1 or 2, steel be used (type 1, which contains niobium, may be needed to meet strength requirements). The steel should be specified to be killed, fine-grained, and normalized, with Charpy V-notch impact-energy values of 20 J (15 ft·lbf) at -46 deg C (-50 deg F) in the longitudinal direction and 20 J (15 ft·lbf) at -29 deg C (-20 deg F) in the transverse direction.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001524
EISBN: 978-1-62708-221-1
Abstract
A 140 ft. (42.7 m) long boom on a dragline crane used in coal strip-mining operations failed. One of the principal load-bearing longitudinal beams or chords of the trussed boom had fractured adjacent to a bolt hole at a location about halfway along the length of the boom. Over the lifetime of the crane, several repairs had been made to the boom. At least a year before the failure, a reinforcing gusset plate had been bolted and welded to this chord at this location. Stereomicroscopy revealed microcracks in the weld metal. A fatigue crack 45 mm (1.8 in.) long was observed to emanate from this microcrack. Scanning electron microscopy showed an overload crack extended across the remaining cross section of the chord. It was concluded that the presence of the bolt hole used to attach the gusset plate to the chord created a stress riser adjacent to the hole. Repeated high tensile stresses on the chord during the lifting of enormous loads initiated a fatigue crack in the weld region adjacent to the bolt hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051866
EISBN: 978-1-62708-228-0
Abstract
Coiled tubing used in drilling operations failed at the halfway point of its estimated fatigue life. The failure was found to be transverse to the tubing axis. Visual examination revealed a flat fracture surface extending 13 mm with the rest of the fracture showing shear lips indicative of tensile overload. The flat portion of the fracture surface was typical of fatigue cracking. Fatigue striations were revealed by SEM. Corrosion pitting on the tubing ID from which the fatigue crack had propagated were observed on closer examination. The corrosion pitting was speculated to have occurred when the tubing was idle and fluids accumulated at the bottom of the tubing wraps. The coiled tubing was concluded to have failed prematurely due to low-cycle fatigue initiated at corrosion pitting sites. Corrosive attack on the coiled tubing was recommended to be reduced by completely removing fluids or modifying the fluids in the tubing or purging by flowing dry nitrogen to dry it out.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
Abstract
U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room temperature, and electroplated with cadmium for protection against corrosion. Each fracture showed seven or eight kidney-shaped cracks. At the origins of these cracks on the concave inner surface of the springs, crater-like depressions and beads of melted and resolidified material were found. Fracture of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001551
EISBN: 978-1-62708-233-4
Abstract
A multi-million dollar, four-color printing press used to produce a major weekly magazine was breaking pinions (shouldered shafts) on rolls. The cause of fracture was cyclic fatigue. Steel quality and heat treatment met expected standards. The pinion fracture showed multiple origins indicating rotational vibration fatigue. Keeping bolts tight solved this problem. In another case, grinding machines were unable to produce surfaces of uniform quality and smoothness on steel bearing products. Measurements showed that self-excited vibrations were created when particular steels were ground. It was found that the natural frequency of the wheel truing device was the culprit. A tuned damped absorber was designed and built to modify the resonance. This eliminated the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001210
EISBN: 978-1-62708-227-3
Abstract
In a shipyard one of the two posts of a loading gear fractured under a comparatively small load at the point where it was welded into the ship’s deck. The post consisted of several pipe lengths that were produced by longitudinal seam welding of 27 mm thick sheets. The sheet metal was a construction steel of 60 to 75 kp/sq mm strength. Thick-walled parts of steels of such high strength must be preheated to approximately 200 deg C along the edges prior to welding to minimize the strong heat losses by the cold mass of the part. In the case under investigation this either was not done at all or the preheating was not high enough or sufficiently uniform. This damage was therefore caused by a welding defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001523
EISBN: 978-1-62708-227-3
Abstract
In TAKR 300 (Bob Hope) Class transport ships, the builder observed cracking of steel cloverleaf vehicle tie-down deck sockets following installation. Sockets were made from AH36 steel plate by flame cutting and cold coining, then submerged-arc welded to the shop deck. Cracks initiated from the tip of the cloverleaf pattern in >300 cases aboard several cargo vessels in various stages of construction. Consultants who analyzed the situation concluded that the problem may have been corrosion and hydrogen embrittlement. Three possible mechanisms of failure were considered: overload failure; fatigue fracture; and, environmentally-assisted cracking. Testing indicated overload failure was the cause. Remedial actions were taken to improve the fracture properties of the deck socket. A modified manufacturing process was developed involving milling and cutting instead of coining to round the comers of the flame-cut cloverleaf lobe. This new manufacturing process solved the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001227
EISBN: 978-1-62708-235-8
Abstract
An elbow of 70 mm OD and 10 mm wall thickness made from St 35.29, and exposed to 315 atmospheres internal pressure in an oil hydraulic shear installation, cracked lengthwise after a short operating period. Because the stress was not sufficient to explain the fracture of this elbow under this pressure, an investigation was conducted to establish whether material or processing errors had occurred. Microscopic examination showed that a ferritic-pearlitic structure in select locations was very fine-grained. Other signs of fast cooling as compared to normally formed structure of the core zone were noted. It was also possible that the pipe was resting on a cold plate during bending or that it came in touch with a cold tool. This apparently caused the strains at the transition to the cross-sectional part that had been cooled more slowly. The location of the crack at just this point gave rise to the conclusion that it was formed either by the sole or contributive effect of these stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001150
EISBN: 978-1-62708-235-8
Abstract
A number of rotating blades in a diffuser at a sugar beet processing plant fabricated from rectangular bars cut from rolled carbon-manganese steel plate fractured brittlely. However, apparently identical blades underwent significant plastic deformation without fracture. Inspection of both fractured and bent blades revealed similar preexisting cracks at the toes of bar attachment welds. Metallographic examination of the bent and the fractured bars revealed they had been cut parallel and transverse, respectively, to the rolling direction of the steel plate. Due to the combined effects of the low fracture toughness of the plate on planes parallel in the rolling direction, the presence of the preexisting cracks, and the relatively large section thickness of the bars, the bars whose lengths were transverse to the rolling direction fractured brittlely when subjected to impact loads. Had the poor transverse properties of thick-section plate been recognized, and all the bars properly cut with respect to the rolling direction, the premature fractures would not have occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048767
EISBN: 978-1-62708-235-8
Abstract
The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001188
EISBN: 978-1-62708-235-8
Abstract
A short fracture section of a forged and normalized Ck 35 (DIN 17200) steel slide showed three distinct zones: a dark colored crystalline area, an incipient crack propagating into a far advanced, rubbed fracture surface, and a fine crystalline final break. Metallographic examination showed the dark incipient crack was present before the last heat treatment and was oxidized and decarburized prior to the conclusion of the annealing process. The crack ran perpendicular to the fiber, so it was not formed before or during forging. It was a thermal stress crack produced during flame cutting of the middle section of the slide. The initial crack acted as a sharp notch favoring the formation of the fatigue fracture which lead to the failure of the slide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0089716
EISBN: 978-1-62708-231-0
Abstract
A railway tank car developed a fracture in the region of the sill and shell attachment during operation at -34 deg C (-30 deg F). On either side of the sill-support member, cracking initiated at the weld between a 6.4 mm thick frontal cover plate and a 1.6 mm thick side support plate. The crack then propagated in a brittle manner upward through the side plate, through the welds attaching the side plate to a 25 mm (1 in.) thick shell plate (ASTM A212, grade B steel), and continued for several millimeters in the shell plate before terminating. Other plates involved were not positively identified but were generally classified as semi-killed carbon steels. Investigation (visual inspection, hardness testing, chemical analysis, Charpy V-notch testing, and drop-weight testing) supported the conclusions that the fracture was initiated by weld imperfections and propagated in a brittle manner as a result of service stresses acting on the plate having low toughness at the low service temperatures encountered. Recommendations included that the specifications for the steel plates be modified to include a toughness requirement and that improved welding and inspection practices be performed to reduce the incidence of weld imperfections.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0007736
EISBN: 978-1-62708-219-8
Abstract
Single 6.4 mm (0.25 in.) post-tensioning wires failed in a parking garage in the southern portion of the United States. Several failed wires were removed and the lengths were examined for signs of corrosion using SEM metallography. The scans showed localized shallow pitting, and chloride was detected in some of the pits. The test also revealed an initial crack that was probably caused by hydrogen embrittlement. Since no chloride was detected on the fracture surface, and none was detected in the overlying concrete, the corrosion appears to have begun prior to the wires' placement in the concrete.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047512
EISBN: 978-1-62708-219-8
Abstract
During construction of a revolving sky-tower observatory, a 2.4 m (8 ft) diam cylindrical column developed serious circumferential cracks overnight at the 14 m (46 ft) level where two 12 m (40 ft) sections were joined by a girth weld. The temperatures ranged from 12 deg C (53 deg F) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding, choice of a more favorable electrode to avoid porosity, careful termination of all welds to avoid formation of notches, and completion of all welds before other sections of the column are erected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
1