Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Fuel tanks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047673
EISBN: 978-1-62708-217-4
Abstract
A series of resistance spot welds joining Z-shape and C-shape members of an aircraft drop-tank structure failed during ejection testing. The members were fabricated of alclad aluminum alloy 2024-T62. The back surface of the C-shape members showed severe electrode-indentation marks off to one side of the spot weld, suggesting improper electrode contact. Visual examination of the weld fractures showed that the weld nuggets varied considerably in size, some being very small and three exhibiting an HAZ but no weld. Of 28 welds, only nine had acceptable nugget diameters and fusion-zone widths. The weld deficiencies were traced to problems in forming and fit-up of the C-shape members and to difficulties in alignment and positioning of the weld tooling. The failure of the resistance spot welds was attributed to poor weld quality caused by unfavorable fit-up and lack of proper weld-tool positioning. The problem could be solved by better forming procedures to provide an accurate fit-up that would not interfere with electrode alignment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
Abstract
New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened, H2SO4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Scanning electron microscopy and microprobe analysis (both conventional energy-dispersive and Auger analyzers) showed that the anodic coating was applied over an improperly cleaned and contaminated surface. The expanding corrosion product had cracked and, in some places, had flaked away the anodized coating. The corrodent had penetrated the base aluminum in the form of subsurface intergranular attack to a depth of 0.035 mm (0.0014 in.). It was recommended that a vapor degreaser be used during cleaning prior to anodizing. A hot inhibited alkaline cleaner was also recommended during cleaning prior to anodizing. The panels should be dichromate sealed after anodizing. The use of deionized water was also recommended during the dichromate sealing operation. In addition, the use of an epoxy primer prior to shipment of the panels was endorsed. Most importantly, surveillance of the anodizing process itself was emphasized.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047677
EISBN: 978-1-62708-217-4
Abstract
Resistance spot welds joining aluminum alloy 2024-T8511 stiffeners to the aluminum alloy 6061-T62 skin of an aircraft drop tank failed during slosh and vibration testing. Visual examination of the fracture surfaces showed that the failure was by tensile or bending overload. Measurements of the fractured spot welds established that all welds were below specification size. Review of the assembly procedures revealed that there had been poor fit-up between the stiffeners and the tank skin, which resulted in weak, undersize weld nuggets. The spot welds failed because of undersize nuggets that were the result of shunting caused by poor fit-up. The forming procedures were revised to achieve a precise fit between the stiffener and the tank wall. Also, an increase in welding current was suggested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091727
EISBN: 978-1-62708-217-4
Abstract
During an acceptance test of the Apollo spacecraft 101 service module prior to delivery, an SPS fuel pressure vessel (SN054) (titanium Ti-6Al-4V, approximately 1.2 m (4 ft) in diam and 3 m (10 ft) long) containing methanol developed cracks adjacent to the welds. The test was stopped. This acceptance test had been run 38 times on similar pressure vessels without problems. The methanol was a safe-fluid replacement for the storable hypergolic fuels (blend of 50% hydrazine and 50% unsymmetrical dimethyl hydrazine). Investigation (visual inspection and 65X images) showed similarities to stress-corrosion resulting from contamination during misprocessing of the vessels. However, another vessel underwent a more severe testing procedure and failed catastrophically. Further investigation supported the conclusion that the failure cause was SCC of titanium in methanol. Attack is promoted by crazing of the protective oxide film. It was learned that minor changes in the testing procedures could inhibit or accelerate the reaction. Recommendations included replacing the methanol with a suitable alternate fluid. Isopropyl alcohol was chosen after considerable testing. This incident further resulted in the imposition of a control specification (MF0004-018) for all fluids that contact titanium for existing and future space designs.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091809
EISBN: 978-1-62708-217-4
Abstract
Aluminum 7075 aircraft wing tanks failed in the 1950s. Investigation (visual inspection, biological analysis, and chemical analysis) supported the conclusion that MIC was the cause of the failures. Water condensed into the fuel tanks during flight led to microbial growth on the jet fuel. Pitting attack occurred under microbial deposits on the metal surface in the water phase or at the water-fuel interface. Previously, exposure of aluminum 7075 to cultures of various isolates showed that 27 bacterial isolates and 3 fungi could seriously corrode the aluminum alloy over several weeks. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006424
EISBN: 978-1-62708-217-4
Abstract
An external tank pressure/vent valve regulates the external tank fuel feed system, which transfers fuel under pressure to the internal tanks of the aircraft. A dual-position valve was found to be sticking at the intermediate positions. Also, service air check valves located on the incoming lines contained poppets that were being stuck in a closed or partially closed position because of suspected corrosion product. Residue taken from the check valve poppet and from the dual-position valve was chemically analyzed. Chloride was present in both samples. It was suspected that moisture entering the service air lines left a chloride-containing compound upon evaporation within the air check valves and pressure/vent assembly. This compound subsequently reacted with the anodized, dichromate sealed check valve housing to lock the check valve poppets in a closed or partially closed position, decreasing the actual pressure being supplied to the pressure/vent valve. It was recommended that an inspection be conducted to ensure that the service air check valves are operating properly prior to removal and servicing of the pressure/vent valve assembly. It was also recommended that dry-film lubricant be checked to ensure that it meets specifications for the pressure/vent valve assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.