Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Aircraft bearings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001754
EISBN: 978-1-62708-241-9
Abstract
The case study presented in this article details the failure investigation of an M50 alloy steel bearing used in a jet engine gearbox drive assembly. It discusses the investigative steps and analytic tools used to determine the root cause, highlighting the importance of continuous, thorough questioning by the investigating activity. The combined analyses demonstrated that the bearing failed by a single event overload as evidenced by bulk deformation and traces of foreign material on the rolling elements. The anomalous transferred metal found on the rolling elements subsequently led to the discovery of overlooked debris in an engine chip detector, and thus resulted in a review of several maintenance practices.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
Abstract
An aero engine failed due to the misalignment of the ball bearing fitted on the main shaft of the engine. The aero engine incorporates two independent compressors: a six-stage axial flow LP compressor and a nine-stage axial flow HP compressor. The bearing under consideration is a HP location bearing and is fitted at the rear of the nine-stage compressor. It was supposed to operate for at least 5000 h, but failed catastrophically after 1300 h, rendering the engine unserviceable. Unusually high stresses caused by misalignment and uneven axial loading resulted in the generation of fatigue crack(s) in the inner race. When the crack reached the critical size, the collar of the race fractured, causing subsequent damage. The cage also failed due to excessive stresses in the axial direction, and its material was smeared on the steel balls and the outer race.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006448
EISBN: 978-1-62708-217-4
Abstract
Three wing flap hinge bearings were received by the laboratory for analysis. The bearings were fabricated from chromium-plated type 440C martensitic stainless steel. The intergranular fracture pattern seen in the electron fractographs, coupled with the corrosion pits observed on the inner diam of the bearings, strongly suggested that failure initiated by pitting and progressed by SCC or hydrogen embrittlement from the plating operation. It was recommended that the extent of the flap hinge bearing cracking problem be determined by using nondestructive inspection because it is possible to crack hardened type 440C during the chromium plating process. An inspection for pitting on the bearing inner diam was also recommended. It was suggested that electroless nickel be used as a coating for the entire bearing. A review of the chromium plating and baking sequence was recommended also to ensure that a source of hydrogen is not introduced during the plating operation.