Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 78
Nickel-chromium-molybdenum steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001790
EISBN: 978-1-62708-241-9
Abstract
The failure of a high-speed pinion shaft from a marine diesel engine was investigated. The shaft, which had been in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined to be an increase in service stresses after bearing replacement along with the presence of nonmetallic inclusions in the shaft.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001248
EISBN: 978-1-62708-221-1
Abstract
Failure occurred in the teeth of a case-hardening Ni-Cr-Mo alloy steel spur gear in the transmission system of heavy duty tracked vehicles. The defects were in the nature of seizure on the involute profile. Scrutiny of the transmission system showed there might be choking in the lubricating oil line. Such would cause seizure of the gears and damage. The incidence of such defects stopped after corrective measures were taken.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047212
EISBN: 978-1-62708-221-1
Abstract
A steering knuckle used on an earthmover failed in service. The component fractured into a flange portion and a shaft portion. The flange was 27.9 cm (11 in.) in diam around which there were 12 evenly spaced 16 mm diam bolt holes. The shaft was hollow with a 10.5 cm (4 in.) OD and a wall thickness of 17 mm. The steering knuckle was made of 4340 steel and heat treated to a hardness of about 415 HRB (yield strength of about 1069 MPa, or 155 ksi). The vehicle had been involved in a field accident six months before the steering knuckle failed. Several components, including portions of the frame, had been damaged and replaced, but there was no observed damage to the steering. Analysis supported the conclusion that the fracture was the result of the prior accident, the most likely explanation being that the shaft was bent and that continued use caused a crack to initiate and propagate to fracture. No evidence of a defective design, improper microstructure, high inclusion count, or other stress-raising condition was observed. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001495
EISBN: 978-1-62708-221-1
Abstract
An axle shaft in an open-pit mining truck hauling overburden failed after operating for 27,000 h. Previous failures had resulted from longitudinal shear, but this had not, bringing material quality into question. Chemical analysis verified that the part was SAE4340 Ni-Cr-Mo alloy steel and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements and should have withstood normal operating conditions. The spacing of the gouge marks coincided with the spacing of the splines, indicative of careless assembly with the mating wheel gear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047570
EISBN: 978-1-62708-221-1
Abstract
A pipe in a chip conveyor cracked at the toe of an exterior fillet weld connecting a flange to the pipe. The chip conveyor consisted of several spool sections. Each section was made up of a length of low-alloy steel pipe and two flanges, which were welded to each end. The composition specified for the pipe steel was 0.25C-0.98Mn-3.52Ni-1.34Cr-0.24Mo, which approximates a 9300 steel with high molybdenum. Investigation supported the conclusion that the conveyor pipe failed by brittle fracture, which was attributed to the stresses induced in forcing the circular flange over the elliptical section of the pipe. The toe of the weld and the adjacent undercut were stress raisers that determined the point of major crack origin. Under residual stress, the internal point of incomplete fusion also initiated additional cracks. Recommendations included ensuring a proper fit between an elliptical flange and pipe end to eliminate the cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047964
EISBN: 978-1-62708-223-5
Abstract
Drastic reduction in the service life of a production gearbox was observed. Within the gearbox, the axial load on a bevel gear (8620 steel, OD 9.2 cm) was taken by a thrust-type roller bearing (3.8 cm ID, 5.6 cm OD) in which a ground surface on the back of the bevel gear served as a raceway. Spalling damage on the ground bearing raceway at five equally spaced zones was disclosed by inspection of the bevel gear. The bearing raceway was checked for runout by mounting the gear on an arbor. It was found that the raceway undulated to the extent of 0.008 mm total indicator reading and a spalled area was observed at each high point. The presence of numerous cracks that resembled grinding cracks was revealed both by magnetic-particle inspection and microscopic examination. Spalling was produced by nonuniform loading in conjunction with grinding cracks. As corrective measures, the spindle of the grinding machine was reconditioned to eliminate the undulations and retained austenite was minimized by careful heat treatment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047817
EISBN: 978-1-62708-233-4
Abstract
A pushrod made by inertia welding two rough bored pieces of bar stock installed in a mud pump fractured after two weeks in service. The flange portion was made of 94B17 steel, and the shaft was made of 8620 steel. It was disclosed by visual examination that the fracture occurred in the shaft portion at the intersection of a 1.3 cm thick wall and a tapered surface at the bottom of the hole. The fatigue crack was influenced by one-way bending stresses initiated at the inner surface and progressed around the entire inner circumference. A heavily decarburized layer was detected on the inner surface of the flange portion and sharp corner was found at the intersection of the sidewall and bottom of the hole. It was concluded that the stress raiser due to the abrupt section change was accentuated by decarburized layer. As a corrective measure, the design of the pushrod was changed to a one-piece forging and circulation of atmosphere during heat treatment was permitted through a hole drilled in the flange end of the rod to avoid decarburization.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
Abstract
A hollow, splined alloy steel aircraft shaft (machined from an AMS 6415 steel forging – approximately the same composition as 4340 steel – then quenched and tempered to a hardness of 44.5 to 49 HRC) cracked in service after more than 10,000 h of flight time. The inner surface of the hollow shaft was exposed to hydraulic oil at temperatures of 0 to 80 deg C (30 to 180 deg F). Analysis (visual inspection, 15-30x low magnification examination, 4x light fractograph, chemical analysis, hardness testing) supported the conclusions that the shaft cracked in a region subjected to severe static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because of the introduction of water into the oil. Recommendations included taking additional precautions in operation and maintenance to prevent the use of oil containing any water through filling spouts or air vents. Also, polishing to remove pitting corrosion (but staying within specified dimensional tolerances) was recommended as a standard maintenance procedure for shafts with long service lives.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001560
EISBN: 978-1-62708-217-4
Abstract
Military aircraft use a cartridge ignition system for emergency engine starts. Analysis of premature failures of steel (AISI 4340) breech chambers in which the solid propellant cartridges were burned identified corrosion as one problem with an indication that stress-corrosion cracking may have occurred. A study was made for stress-corrosion cracking susceptibility of 4340 steel in a paste made of the residues collected from used breech chambers. The constant extension rate test (CERT) technique was employed and SCC susceptibility was demonstrated. The residues, which contained both combustion products from the cartridges and corrosion products from the chamber, were analyzed using elemental analysis and x-ray diffraction techniques. Electrochemical polarization techniques were also utilized to estimate corrosion rates.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006444
EISBN: 978-1-62708-217-4
Abstract
Helicopter rotor blade components that included the horizontal hinge pin, the associated nut, and the locking washer were examined. Visual examination of the submitted parts revealed that the hinge pin, fabricated from 4340 steel, was broken and that the fracture face showed a flat beach mark pattern indicative of a preexisting crack. The threaded area of the pin had an embedded thread that did not appear to come from the pin. A chemical analysis was conducted on the embedded thread and on an associated attachment to determine the origin of the thread. Analysis showed that the thread and nut were 4140 steel. Scanning electron fractographic examination of the fracture initiation site strongly suggested that the fracture progressed by fatigue. It was concluded that the failure of the horizontal hinge pin initiated at areas of localized corrosion pits. The pits in turn initiated fatigue cracks, resulting in a failure mode of corrosion fatigue. It was recommended that all of the horizontal hinge pins be inspected. Those pins determined to be satisfactory for further use should be stripped of cadmium, shot peened, and coated with cadmium to a minimum thickness of 0.0127 mm (0.0005 in.).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001538
EISBN: 978-1-62708-217-4
Abstract
Examination of a cracked nose landing gear cylinder made of AISI 4340 Cr-Mo-Ni alloy steel proved that the part started to fail on the inside diam. When the nucleus of the stress-corrosion crack was studied in detail, iron oxide was found on the fracture surface. A 6500x micrograph revealed this area also displayed an intergranular texture. One of a group of small grinding cracks on the ID of the cylinder nucleated the failure. Other evidence indicated the cracks developed when the cylinder was ground during overhaul.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001145
EISBN: 978-1-62708-217-4
Abstract
Cartridge-pneumatic starter systems are used on military aircraft. In the cartridge mode used for alert starts, the starter turbine is driven by hot gases produced through the controlled burning of a solid propellant cartridge within a closed chamber (the breech chamber/cartridge chamber assembly). Premature failures of steel breech chambers have been prevalent enough to cause serious concern. The breech chamber is fabricated from a 4340 Ni-Cr-Mo steel forging heat treated to a hardness in the range HRC 40 to 45. The failures have taken several forms, including fracture and unzipping of the chamber dome, burn-through of the dome, and shearing of bayonet locking lugs. Factors identified as significant in the failures are the pressure developed in the chamber and internal corrosion of the chamber in an environment that can produce stress-corrosion cracking. The interior configuration of the chamber and the stress distribution also have a bearing upon the failure modes. Several failures are reviewed to illustrate the problems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001540
EISBN: 978-1-62708-217-4
Abstract
Ground maintenance personnel discovered hydraulic fluid leaking from two small cracks in a main landing gear cylinder made from AISI 4340 Cr-Mo-Ni alloy steel. Failure of the part had initiated on the ID of the cylinder. Numerous cracks were found under the chromium plate. A 6500x electron fractograph showed cracking was predominantly intergranular with hairline indications. Leaking had occurred only 43 h after overhaul of the part. Total service time on the part was 9488 h. It was concluded that cracking on the ID was caused by hydrogen embrittlement which occurred during or after overhaul. The specific source of hydrogen which produced failure was not ascertainable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001542
EISBN: 978-1-62708-217-4
Abstract
A nose landing gear cylinder made from AISI 4340 Ni-Cr-Mo alloy steel was found cracked and leaking, causing partial depressurization. Investigation revealed the crack to be a stress-corrosion type, judging by the 6500x electron fractograph. It had started in a region of concentrated, large non-metallic inclusions near the chromium-plated ID of the cylinder. Also, there were breaks in the chromium plate and pits in the underlying base metal. The cylinder had been in service for 18,017 h, and 5948 h had passed since the first and only overhaul. Substandard plating of the ID at this time ultimately resulted in pitting of the metal. The combination of surface pitting and stress concentration at the nearby inclusions resulted in stress-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047835
EISBN: 978-1-62708-217-4
Abstract
An articulated rod (made from 4337 steel (AMS 6412) forging, quenched and tempered to 36 to 40 HRC) used in an overhauled aircraft engine was fractured after being in operation for 138 h. Visual examination revealed that the rod was broken into two pieces 6.4 cm from the center of the piston-pin-bushing bore. The fracture was nucleated at an electroetched numeral 5 on one of the flange surfaces. A notch, caused by arc erosion during electroetching, was revealed by metallographic examination of a polished-and-etched section through the fracture origin. A remelted zone and a layer of untempered martensite constituted the microstructure of the metal at the origin. Small cracks, caused by the high temperatures developed during electro-etching, were observed in the remelted area. It was concluded that fatigue fracture of the rod was caused by the notch resulting from electroetching and thus electroetched marking of the articulated rods was discontinued as a corrective measure.
1