Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47
Cast iron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047352
EISBN: 978-1-62708-221-1
Abstract
Two broken ball-mill liners from a copper-mine ore operation were submitted for failure analysis. These liners failed prematurely, having reached less than 20% of their expected life. The chemical composition of the liners was within specifications for high-chromium white cast iron. The two broken liners were sand blasted for visual inspection and subsequent metallography and hardness testing. Many cracks were found externally and on the undersides. There were also signs of mechanical damage that occurred inside the mill before detection of the failures. The underside cracking is significant because the user advised that the liners were not backed in the installation. Cracking was present in the microstructures of both liners. These cracks tend to fracture the brittle carbide phase first; once nucleated, the sharp cracks can propagate and grow to critical dimensions, which eventually induces complete failure to the load-bearing section. The premature failure of these liners was caused by severe localized overstress conditions due to localized impact in service. Proper backing of shell liners should be ensured to reduce the effect of impact forces in the ball mill.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090938
EISBN: 978-1-62708-221-1
Abstract
Both halves of a gray cast iron transmission housing from a 50-ton dump truck were found to contain numerous cracks. The housing material was possibly G3000 grade designation for automotive gray cast iron. No service duration or material specifications were provided. Investigation (visual inspection, tensile testing, 2% nital etched 59x cross sections, and metallographic analysis) supported the conclusion that failure was due to applied stresses sufficient to fracture the castings which exhibited brittle overload cracks at highly stressed locations. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001633
EISBN: 978-1-62708-221-1
Abstract
Failure analysis of a mobile harbor crane wheel hub that included SEM and EDS analyses demonstrated that the mechanism of failure was fatigue. The wheel hub was a ductile cast iron component that had been subjected to cyclic loading during a ten-year service period. The fracture surface of the fatigue failure also contained corrosion deposit, suggesting that cracking occurred over a period of time sufficient to allow corrosion of the cracked surfaces. Replacement and alignment of the failed wheel hub was recommended along with inspection of the nonfailed wheel hubs that remained on the crane.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001200
EISBN: 978-1-62708-221-1
Abstract
During the operation of tractors with cantilevered body, the lateral wall of the hypoeutectic cast iron cylinder blocks cracked repeatedly. Three of the blocks were examined. The grain structure of the thick-walled part consisted of uniformly distributed graphite of medium flake size in a basic mass of pearlite with little ferrite. But the thin-walled part showed a structure of dendrites of precipitated primary solid solution grains with pearlitic-ferritic structure and a residual liquid phase with granular graphite in the ferritic matrix. The structure was formed by undercooling of the residual melt. In this case, it was promoted by fast cooling of the thin wall and had comparatively low strength. The fracture formation in the cylinder blocks was ascribed primarily to casting stresses. They could be alleviated by better filleting of the transition cross sections. The fracture was promoted by the formation of undercooled microstructure of low strength in the thin-walled part. Similar damage appeared in a cylinder head, in which case, the cracks were promoted by a supercooled structure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001198
EISBN: 978-1-62708-221-1
Abstract
Cast iron bearing caps in tractor engines fractured repeatedly after only short operating periods. The fracture originated in a cast-in groove and ran approximately radially to the shaft axis. The smallest cross section was at the point of fracture. The core structure of the caps consisted of graphite in pearlitic-ferritic matrix. Casting stresses did not play a decisive role because of the simple shape of the pieces that were without substantial cross sectional variations. Two factors exerted an unfavorable effect in addition to comparatively low strength. First, the operating stress was raised locally by the sharp-edged groove, and second, the fracture resistance of the cast iron was lowered at this critical point by the existence of a ferritic bright border. To avoid such damage in the future it was recommended to observe one or more of the following precautions: 1) Eliminate the grooves; 2) Remove the ferritic bright border; 3) Avoid undercooling in the mold and therefore the formation of granular graphite; 4) Inoculate with finely powdered ferrosilicon into the melt for the same purpose; and, 5) Anneal at lower temperature or eliminate subsequent treatment in consideration of the uncomplicated shape of the castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
Abstract
A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear to have had significant effects on the fracture. Recommendations included carefully and properly aligning the flange surface with the roll holder to achieve uniform distribution of the load. Also, a more ductile metal, such as steel or ductile iron, would be more suitable for this application and would require less exact alignment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089633
EISBN: 978-1-62708-220-4
Abstract
A stuffing box (sand cast from ASTM A 536, grade 60-45-10, ductile iron) began leaking water after two weeks of service. The machine was operating at 326 rpm with a discharge water pressure of 21.4 MPa (3100 psi). Investigation (visual inspection, mechanical analysis, and nital etched 100x magnification) supported the conclusion that the crack initiated at the inner edge of a lubrication hole and had propagated toward both the threaded and flange ends of the casting. An appreciable residual-stress concentration must have been present and caused propagation of the crack. The residual stress might have been caused when a fitting was tightly screwed into the lubrication hole, and it might have been concentrated by notches at the inner end of the hole created when the drill broke through the sidewall to the stuffing box.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047321
EISBN: 978-1-62708-224-2
Abstract
A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable drum drove the brake drum, and resistance was provided by brake bands applied to the outside surface of the brake drum. Friction during heavy service was sufficient to heat the brake drum, clutch mount, and disk to a red color. Examination of the assembly indicated that the brake drum would cool faster than its mounts and would contract onto them. Brittle fracture of the brake drum occurred as a result of thermal contraction of the drum web against the clutch mount and the disk. The ID of the drum web was enlarged sufficiently to allow for clearance between the web and the clutch mount and disk at a temperature differential of up to 555 deg C (1000 deg F). With the adoption of this procedure, brake drums failed by wear only.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089646
EISBN: 978-1-62708-235-8
Abstract
Nodular cast iron crankshafts and their main-bearing inserts were causing premature failures in engines within the first 1600 km (1000 mi) of operation. The failures were indicated by internal noise, operation at low pressure, and total seizing. Concurrent with the incidence of engine field failures was a manufacturing problem: the inability to maintain a similar microfinish on the cope and drag sides of a cast main-bearing journal. Investigation supported the conclusion that the root cause of the failure was carbon flotation due to the crankshafts involved in the failures showing a higher-than-normal carbon content and/or carbon equivalent. Larger and more numerous cope side graphite nodules broke open, causing ferrite caps or burrs. They then became the mechanism of failure by breaking down the oil film and eroding the beating material. A byproduct was heat, which assisted the failure. Recommendations included establishing closer control of chemical composition and foundry casting practices to alleviate the carbon-flotation form of segregation. Additionally, some nonmetallurgical practices in journal-finishing techniques were suggested to ensure optimal surface finish.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089651
EISBN: 978-1-62708-235-8
Abstract
Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through the radius of an adjusting screw arm. The typical fracture face exhibited two distinct modes of crack propagation: the upper portion indicated overload at final fracture, whereas the majority of the fracture suggested a fatigue fracture. Investigation (visual inspection, 1.5x/30x/60x magnification, and nital etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility of failure and redesign to increase the cross-sectional area of the levers.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047297
EISBN: 978-1-62708-235-8
Abstract
Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings was suspected. Metallurgical examination on two representative castings supported the conclusions that the cracks in these gray iron door closers that were present either before or during the heat treatment were attributed to a substandard microstructure of the wrong type of graphite combined with excessive ferrite. This anomalous structure is caused by shortcomings in the foundry practice of chemical composition, solidification, and inoculation control. Judging from the microstructure, the strength of the material was lower than desired for class 30 gray iron, and the suspected heat treatment further reduced the strength. Recommendations included that the chemistry and inoculation should be controlled to produce type A graphite structure. The chemistry control should aim for a carbon equivalent close to 4.3% to achieve adequate fluidity for thin sections and to alleviate gas defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047234
EISBN: 978-1-62708-233-4
Abstract
Several deburring drums that fractured were filled with abrasive, water, and small parts, such as roller bearing rollers, and rotated on their axis at 36 rpm. Cracks were discovered very early in the service lives of these high-chromium white iron cast structures. All of the fractures were through bolt holes in the mounting flange. The holes had a sharp edge and exhibited uneven wear on the inside diameter. In operation, the mounting bolts were frequently found to be loose and in at least one case broken off. A 25x scanning electron microscopy (SEM) fractograph from near this fracture-initiation area showed fatigue striations. No casting or metallurgical structural defects were found that could explain the failures. This evidence supports the conclusion that cracking was a result of the stress-concentration site at the bolt holes where a fatigue-initiated fracture occurred. Recommendations included that the radii be increased at the sharp corners and that lock-wiring be used to secure against bolt loosening.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089657
EISBN: 978-1-62708-233-4
Abstract
The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil is forced as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons already in the field to identify and reject those containing vermicular graphite. In addition, metallographic control standards were suggested for future production lots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0047328
EISBN: 978-1-62708-231-0
Abstract
Cracks formed on cylinder inserts from a water-cooled locomotive diesel engine, on the water side in the neck between the cylindrical part and the collar. Cracks were revealed by magnetic-particle inspection. As a rule, several parallel cracks had appeared, some of which were very fine. The part played by corrosion in the formation of the cracks was demonstrated with the help of metallographic techniques. The surface regions of the cracks widened into funnel form, which is a result of the corrosive influence of the cooling water. Actual corrosion pits could not be found indicating that the vibrational stresses had a greater share in the damage than the corrosive influence. Cracks appeared initially only in those engines in which no corrosion inhibitor had been added to the cooling water. The cracking was caused by corrosion fatigue. The combined presence of a corrosive medium and cyclical operating stress was needed to cause cracks. No cracks appeared when corrosion inhibitor was added to the cooling water.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0046505
EISBN: 978-1-62708-219-8
Abstract
One of three valves in a dry automatic sprinkler system tripped accidentally, thus activating the sprinklers. Maintenance records showed that the three valves had been in service less than two years. The valve consisted of a cast copper alloy clapper plate that was held closed by a pivoted malleable iron latch. The latch and top surface of the clapper plate were usually in a sanitary-water environment (stabilized, chlorinated well water with a pH of 7.3) under stagnant conditions. Process make-up water that had been clarified, filtered, softened, and chlorinated and had a pH of 9.8 was occasionally used in the system. Analysis (visual inspection and 250x micrograph) supported the conclusions that failure of the latch was caused by plastic deformation from extensive loss of metal by galvanic corrosion and the sudden loading related to the tripping of the valve. Failure in some regions of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047335
EISBN: 978-1-62708-219-8
Abstract
A section of cast iron water main pipe contained a hole approximately 6.4 x 3.8 cm (2.5 x 1.5 in.). The pipe was laid in clay type soil. Examination revealed severe pitting around the hole and at the opposite side of the outside diam. A macroscopic examination of a pipe section at the hole area showed that the porosity extended a considerable distance into the pipe wall. Metallographic examination revealed a graphite structure distribution expected in centrifugally cast iron with a hypoeutectic carbon equivalent. Chemical analyses of a nonporous sample had a composition typical of cast iron pipe. Chemical analyses of the porous region had a substantial increase in carbon, silicon, phosphorus, and sulfur. The porous appearance and the composition of the soft porous residue confirmed graphitic corrosion. The selective leaching of iron leaves a residue rich in carbon, silicon, and phosphorus. The high sulfur content is attributed to ferrous sulfide from a sulfate reducing bacteria frequently associated with clay soils. Reinforced coal tar protective coating was recommended.
1