Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19
Fretting wear
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001851
EISBN: 978-1-62708-241-9
Abstract
Shaft misalignment and rotor unbalance contribute to the premature failure of many machine components. To understand how these failures occur and quantify the effects, investigators developed a model of a rotating assembly, including a motor, flexible coupling, driveshaft, and bearings. Equations of motion accounting for misalignment and unbalance were then derived using finite elements. A spectral method for resolving these equations was also developed, making it possible to obtain and analyze dynamic system response and identify misalignment and unbalance conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0091897
EISBN: 978-1-62708-236-5
Abstract
The shaft-and-bearing assembly in a freon compressor was subjected to severe pounding and vibration after six years of service. After about one year of service, the compressor had been shut down to replace a bearing seal. One month before the shaft failed, a second seal failure occurred, requiring the collar, spacer sleeve, seal, roller bearing, and lock washer to be replaced. The shaft was made of 4140 steel, heat treated to a hardness of 20 to 26 HRC. The seal, bearing, and lock washer were commercial components. Investigation (visual inspection, 4.5x images, x-ray diffraction, hardness testing, and microscopic exam) supported the conclusion that shaft failure was initiated by fretting between the bearing race and the bearing surface on the shaft because of improper bearing installation. Once clearance was established between the bearing and the shaft, the shaft began pounding on the inner bearing race, causing final failure of the shaft surface. Recommendations included proper fitting of the shaft and bearing race to preventing movement of the bearing on the shaft. Also, the lock washer and locknut must be installed properly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001728
EISBN: 978-1-62708-236-5
Abstract
The propeller from a small private airplane came off in flight. The head ends of all six attachment bolts remained in the propeller hub when it was found. Two threaded shanks with nuts remained with the engine, while the remaining four shank ends with their nuts were missing. Parts available for examination, in addition to the hub and attachment bolts, were the two propeller blades and the engine crankshaft. The purpose of this examination was to determine the nature and probable cause of failure in the six attachment bolts. Indications of fatigue failure and wear were the major findings in visual and low power microscopic examination. Fracture surfaces indicated failure was initiated in the threads in four bolts and in the shanks in two. The group of four bolts failed primarily due to tensile loads, while the other two bolts failed primarily due to bending loads. It was concluded that failure was due to improper installation torqueing of the bolts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047956
EISBN: 978-1-62708-235-8
Abstract
Randomly selected dictating-machine drive mechanisms, which contained small ball bearings, were found to exhibit unacceptable fluctuations in drive output during the early stages of production. It was indicated that the bearing raceways were being true brinelled before or during installation of the bearings. The preinstallation practices and the procedures for installing the bearings were carefully studied. It was revealed that during one preinstallation step, the lubricant applied by the bearing manufacturer was removed and the bearing was relubricated with another type of lubricant prior to which the bearings were ultrasonically cleaned in trichloroethylene to ensure extreme cleanness. Equally spaced indentations resembling true brinelling were revealed by careful examination of the bearing raceways. It was concluded that the ultrasonic energy transmitted to the balls brinelled the raceways enough to cause fluctuations in machine output. Solvent-vapor cleaning was employed as a corrective technique for removing bearing lubricant.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
Abstract
A hi-rail device is a vehicle designed to travel both on roads and on rails. In this case, a truck was modified to accept the wheels for rail locomotion. The rear wheel/axle set was attached to the truck frame. Both the front and rear wheel/axle sets were raised by means of a hydraulic cylinder driven off the PTO of the truck. The wheel/axle set was rigidly fixed into an up or down position by the use of locking pins. It was assumed by the manufacturer that there would be no load on the cylinder once the wheel/axle set was in its locked position. However, as the cylinder pivoted about its mounting trunnion and extended during its motion, it interfered with a frame member. This caused both a bending load and a rotational movement. These effects caused a combination of fretting, galling, and fatigue to the internal thread structure of the clevis. As a result of these deleterious effects, failure of the thread structure of the clevis occurred. The failure occurred where the cylinder rod screws into the clevis. The rod was manufactured from 1045 steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
Abstract
Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited by a large portion of the contact area. Fine corrosion pits in the periphery were observed and intense mechanical material transfer that can take place during fretting was revealed. Smearing of material layers over each other during wear was observed and attack by pitting corrosion was interpreted to be possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048421
EISBN: 978-1-62708-226-6
Abstract
Wear on a titanium screw head with a lip of material that that was transported by fretting at a plate-hole edge was studied. A flat fretting zone was visible on the screw surface over the material lip. A cellular wear structure containing wear debris was found. No morphological signs of corrosion were observed in connection with fretting structures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
Abstract
A structure had been undergoing fatigue testing for several months when a post-like member heat treated to a tensile strength of 1517 to 1655 MPa (220 to 240 ksi) ruptured. The fracture occurred in the fillet of the post that contacted the edge of a carry-through box bolted to the member. At failure, the part was receiving a second set of loads up to 103.6% of design load. Visual investigations showed rubbing and galling of the fillet. Microscopic and metallographic examination revealed beach marks on the fracture surface and evidence of cold work and secondary cracking in the rubbed and galled area. Electron fractography confirmed that cracking had initiated at a region of tearing and that the cracks had propagated by fatigue. Mechanical properties of all specimens exceeded the minimum values specified for the post. This evidence supports the conclusion that fatigue was the primary cause of failure. Rubbing of the faying surfaces worked the interference area on the post until small tears developed. These small tears became stress-concentration points that nucleated fatigue cracks. Recommendations included rounding the edge of the box in the area of contact with the post to ensure a tangency fit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001619
EISBN: 978-1-62708-225-9
Abstract
A splined shaft on a wood chip-to-fiber refiner failed during equipment start-up. The shaft broke into two pieces at a location close to the end of the splined part of the shaft. The failed component showed the classical fatigue-cracking fracture face. The shaft had a diam of approximately 140 mm (5.5 in.) in the unsplined section and was made of 4340 Ni-Cr-Mo alloy steel heat treated to a uniform hardness of HRC 31. Cracks from at least seven different origins had coalesced to produce the single large crack that resulted in failure. The origins of these cracks were on the flanks of the splines. SEM examination revealed the splined shaft failed by fretting fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048661
EISBN: 978-1-62708-225-9
Abstract
The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin was made of 1141 steel, the shaft 1117 steel, and the drive wheel 52100 steel. It was found that failure of the clutch-drive support assembly occurred as a result of fatigue fracture of the taper pin. A loose fit between the drive wheel and the shaft and between the drive wheel and the pin permitted movement that resulted in fatigue failure. Fretting of the pin and drive shaft was observed but did not appear to have contributed to the failure. To prevent reoccurrence, the assembly should be redesigned to include an interference fit between the shaft and the drive wheel. The drive wheel and the shaft should be taper reamed at assembly to ensure proper fit. In addition, receiving inspection should be more critical of the components and accept only those that meet specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
Abstract
Factors which may lead to premature roller bearing failure in service include incorrect fitting, excessive pre-load during installation, insufficient or unsuitable lubrication, over-load, impact load vibration, excessive temperature, contamination by abrasive matter, ingress of harmful liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001621
EISBN: 978-1-62708-227-3
Abstract
A crankshaft flange from a marine diesel engine illustrated a less-common case of fretting-fatigue cracking. The crankshaft was from a main engine of a sea-going passenger/vehicle ferry. The afterface of the flange was bolted to the flange of a shaft driving the gearbox. Cracks observed were sharp, transgranular, and not associated with any decarburization or other microstructural anomalies in the steel. Cracking of this main engine crankshaft flange was very likely a consequence of fatigue cracking initiated at fretting damage. The cause of the fretting was from loosening of the bolts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
Abstract
A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic action between aluminum alloy bracket and steel bolt. To preclude or minimize recurrences, fittings in service should be inspected periodically by dye penetrant for signs of cracking on the end face and within the fitting hole and protected with a suitable coating to exclude damaging chlorides. Also, a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service operation may have loosened the fitting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091893
EISBN: 978-1-62708-218-1
Abstract
An automotive front-wheel outer angular-contact ball bearing generated considerable noise shortly after delivery of the vehicle. The inner and outer rings were made of seamless cold-drawn 52100 steel tubing, the balls were forged from 52100 steel, and the retainer was stamped from 1008 steel strip. The inner ring, outer ring, and balls were austenitized at 845 deg C (about 1550 deg F), oil quenched, and tempered to a hardness of 60 to 64 HRC. Investigation (visual inspection) supported the conclusion that failure was caused by fretting due to vibration of the stationary vehicle position without bearing rotation. Recommendations included improving methods of securing the vehicle during transportation to eliminate vibrations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001023
EISBN: 978-1-62708-214-3
Abstract
The failure of an ATAR engine accessory angle drive gear assembly caused an engine flame-out in a Mirage III aircraft of the Royal Australian Air Force (RAAF) during a landing. Stripping of the engine revealed that the bevel gear locating splines (16 NCD 13) had failed. Visual and low-power microscope examination of the spline of the shaft showed evidence of fretting wear debris; similar wear was observed on the splines of the mating bevel gear. It was concluded that the splines had failed by severe fretting wear. Fretting damage was also observed on the shaft face adjacent to the splines and on the bevel gear abutment shoulder. Additional tests included a metrological inspection of the shaft, bevel gear and support ring; metallographic examination of a section from the shaft; chemical analysis of the shaft material (16 NCD 13); and hardness testing of a sample of the yoke material. The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear.