Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Hot cracking
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001571
EISBN: 978-1-62708-229-7
Abstract
The accident at Three Mile Island Unit No. 2 on 28 March 1979 was the worst nuclear accident in US history. By Jan 1990, it was possible to electrochemically machine coupons from the lower head using a specially designed tool. The specimens contained the ER308L stainless steel cladding and the A533 Grade B plate material to a depth of about mid-wall. The microstructures of these specimens were compared to that of specimens cut from the Midland, Michigan reactor vessel, made from the same grade and thickness but never placed in service. These specimens were subjected to known thermal treatments between 800 and 1100 deg C for periods of 1 to 100 min. Microstructural parameters in the control specimens and in those from TMI-2 were quantified. Selective etchants were used to better discriminate desired microstructural features, particularly in the cladding. This report is a progress report on the quantification of changes in both the degree of carbide precipitation and delta ferrite content and shape in the cladding as a function of temperature and time to refine the estimates of the maximum temperatures experienced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0047158
EISBN: 978-1-62708-226-6
Abstract
The pointed ends of several stainless steel forceps split or completely fractured where split portions broke off. All the forceps were delivered in the same lot. The pointed ends of the forceps are used for probing and gripping very small objects and must be true, sound, and sharp. Analysis supported the conclusion that the failures to be the result of seams in the steel that were not joined during hot working. Recommendations included that closer inspection of the product take place at all stages of manufacturing. Inspection at the mill will minimize discrepancies at the source, and the inspection of the finished product will help detect obscure seams.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
Abstract
The presence of subsurface cracks in a longitudinal weld seam of an AISI type 316 stainless steel heat-exchanger shell was revealed by radiographic testing. Numerous intergranular cracks associated with the root pass of the weld, which had propagated both parallel and normal to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use of an incorrect electrode for the root pass as these electrodes are crack sensitive if overheated. The weld seam was completely ground out and replaced with the correct electrode material as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
Abstract
A fuel-nozzle-support assembly showed transverse indications after fluorescent liquid-penetrant inspection of a repair-welded area at a fillet on the front side of the support neck adjacent to the mounting flange. Visual examination disclosed an irregular crack. The crack through the neck was sectioned; examination showed that the crack had extended through the repair weld. The crack had followed an intergranular path. The crack was opened, and binocular-microscope examination of the fracture surface showed that the surface contained dendrites with discolored oxide films that were typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld was attributed to unfavorable welding practice that accentuated thermal contraction stresses and caused hot tearing. Recommendations involved use of a small-diameter welding electrode, a lower heat input, and deposition in shallow layers that could be effectively peened between passes to minimize internal stress.