Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 115
Surface flaws
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
Abstract
The AISI 1080 steel crankshaft of a large-capacity double-action stamping press broke in service and was repair welded. Shortly after the crankshaft was returned to service, the repair weld fractured. The repair-weld fracture was examined ultrasonically which revealed many internal reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture, which was attributed to the combination of weld porosity, many slag inclusions and the formation of brittle martensite in the HAZ. A new repair weld was made using an E312 stainless steel electrode, which provides a weld deposit that contains considerable ferrite to prevent hot cracking. Before welding, the crankshaft was preheated to a temperature above which martensite would form. After completion, the weld was covered with an asbestos blanket, and heating was continued for 24 h. During the next 24 h, the temperature was slowly lowered. The result was a crack-free weld.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046366
EISBN: 978-1-62708-236-5
Abstract
Several large chromium-plated 4340 steel cylinders were removed from service because of deep longitudinal score marks in the plating. One of the damaged cylinders and a mating cast aluminum alloy B850-T5 bearing adapter that also exhibited deep longitudinal score marks were submitted for examination. Analysis (visual inspection, manual testing of the hardness and adherence of the chromium plating, 100x microscopic examination, and hardness testing) supported the conclusions that high localized loads on the cylinder had resulted in chipping of the chromium plating, particles of which became embedded in the aluminum alloy adapter. The sliding action of the adapter with embedded hard particles resulted in scoring of both the cylinder and the adapter. If the cylinder alone had been available for examination, it might have been concluded that the scoring had been caused by entrapped sand or debris from an external source. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001435
EISBN: 978-1-62708-236-5
Abstract
Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year prior to failure the inner race of the roller bearing became slack on the shaft and the seating was built up by the metal-spray process. The shaft was machined to form a rough thread to provide the requisite mechanical key for the sprayed-on metal. Part of this sprayed-on layer became detached after the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001427
EISBN: 978-1-62708-236-5
Abstract
The crankshaft of a compressor fractured through the web remote from the driving end after about three years of service. The fracture ran diagonally across the web into the crankpin. It passed through the centers of two screwed plugs inserted into the web from opposite faces approximately in line with the crankpin center line. The fracture was of the fatigue type, slowly developing cracks having started from opposite sides of each tapped hole and crept across the section. Microstructure of the crankshaft indicated the material was a plain carbon steel, the carbon content being of the order of 0.3%. The failure resulted principally from the stress-raising effects of the screw holes combined with the cracks in the welds. If the screw holes had been left unfilled or if some form of mechanical locking had been used if plugged, failure would have been postponed if not averted.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
Abstract
A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured surface. The kernel was assumed to have resulted from extreme localized overheating. These springs were reported to have been barrel electroplated after fabrication. The intermittent contact with the dangler (suspended cathode contact) as the barrel rotated allowed high local currents when the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0059924
EISBN: 978-1-62708-235-8
Abstract
The large steel ring produced for a nuclear application from a billet of 8822 steel was inspected. The large billet was first forged into a doughnut preform in a large press, and then formed into the ring by ring rolling. A straight-beam ultrasonic inspection was instituted and calibrated using the back-surface-reflection method to determine whether adequate ultrasonic penetration was available. Areas of indications were noted at approximately midheight and adjacent to the bore area. An axial angle-beam inspection from the outside was performed, mainly in the area of indications to reveal detectable indications. The indications were not considered serious enough to reject the forgings. A few small indications in the areas tested were revealed by magnetic particle inspection. The area was conditioned by grinding and polishing to obtain an additional inspection at a greater depth from the inside surface. A much more severe condition was revealed after the test. The indications were classified as areas of chemical segregation and nonmetallic inclusions. The ring was considered unsatisfactory for the application and replacement of the defective ring from an acceptable billet was the most economical solution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001199
EISBN: 978-1-62708-235-8
Abstract
Lakes in zinc die castings are areas encompassed by irregular lines or waves on flat or slightly contoured surfaces which are intended to look uniform. The laked areas have to be removed by polishing before the castings can be plated. This adds considerably to the overall cost of production. Castings examined were of an automobile name-plate holder with two flat sides of approximately 113 sq cm. All castings produced during a trial showed laking defects, the number and position varying from casting to casting. It was found that formation of metal waves and lakes depended primarily on the design of the gate and runner system and operating conditions. High flow efficiencies, with adequate feeding to all sections of the die, and short cavity fill times are desirable.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001251
EISBN: 978-1-62708-235-8
Abstract
In a steel foundry, tensile and bend specimens of castings made in a 2-ton basic arc furnace showed, at irregular intervals, regions with coarse-grained fractures where the specimens broke prematurely, so that the specified strength and toughness values could not be reached. Several cast tensile specimens and some forcibly-broken pieces of the flanges of armature yokes made of cast steel GS C 25 according to DIN 17 245 were investigated. Microscopic examination showed that the cause of damage was the superabundant use of aluminum as deoxidizer. According to recommendations, the aluminum addition was reduced by one-half. Since then, there have been no additional rejects due to insufficient tensile and bend values.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047161
EISBN: 978-1-62708-235-8
Abstract
Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis of the shaft cross section revealed that the crack was approximately 0.5 mm (0.020 in.) deep and oriented in a radial direction. Furthermore, no stringer-type nonmetallic inclusions were observed in the vicinity of the flaw, which did not display the intergranular characteristics of a quench crack. The defect did, however, contain substantial amounts of oxide, which evidently resulted from the hot-working operation. This evidence supports the conclusion that the appearance of this discontinuity, with the long axis parallel to the working direction and radial orientation with regard to depth, strongly suggests a seam produced during rolling. Use of components with surface-defect indications as small as 0.5 mm (0.02 in.) can be risky in certain circumstances. Depending on the orientation of the flaw with respect to applied loads, the nature of the applied forces (for example, cyclic), and the operating environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001589
EISBN: 978-1-62708-235-8
Abstract
The paper discusses the analysis of a coating defect on a high phosphorus electroless nickel (Ni-11 wt. % P) deposit plated on an aluminum alloy substrate. Preliminary investigations had indicated that the elongated defects were possibly caused by the entrapment of long fibers or particles during the plating. The possible sources of fibers were identified. The SEM/EDS analysis of fibers collected from the air duct filters correlated very well with the defect shape and the EDS profile collected from under the defect site. It appears that the fibers from air duct filters directly above the plating line were blown into the plating tank and getting co-deposited. The paper describes the step-by-step analysis of the defect that led to successful identification of the root cause of the defect.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
Abstract
The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x showed a brittle appearance at the fractures. Micrograph examination of an etched section disclosed several small cracks. Fracture of the parts may have occurred through similar cracks. Also observed was a burned layer approximately 0.075 mm (0.003 in.) deep on the latch surface, and hardness at a depth of 0.025 mm (0.001 in.) in this layer was 52 HRC (a minimum of 55 HRC was specified). Thus, the failure was caused by brittle fracture in the hardness-transition zone as the result of excessive impact loading. The burned layer indicated that the cracks had been caused by improper grinding after hardening. Redesign was recommended to include reinforcing the backing web of the tip, increasing the radius at the relief step to 1.5 x 0.5 mm (0.06 x 0.02 in.), the use of proper grinding techniques, and a requirement that the hardened zone extend a minimum of 1.5 mm (0.06 in.) beyond the step.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047956
EISBN: 978-1-62708-235-8
Abstract
Randomly selected dictating-machine drive mechanisms, which contained small ball bearings, were found to exhibit unacceptable fluctuations in drive output during the early stages of production. It was indicated that the bearing raceways were being true brinelled before or during installation of the bearings. The preinstallation practices and the procedures for installing the bearings were carefully studied. It was revealed that during one preinstallation step, the lubricant applied by the bearing manufacturer was removed and the bearing was relubricated with another type of lubricant prior to which the bearings were ultrasonically cleaned in trichloroethylene to ensure extreme cleanness. Equally spaced indentations resembling true brinelling were revealed by careful examination of the bearing raceways. It was concluded that the ultrasonic energy transmitted to the balls brinelled the raceways enough to cause fluctuations in machine output. Solvent-vapor cleaning was employed as a corrective technique for removing bearing lubricant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046210
EISBN: 978-1-62708-235-8
Abstract
Several crankshaft failures occurred in equipment that was being used in logging operations in subzero temperatures. Failure usually initiated at a cracked pin oil hole, and the failure origin was approximately 7.6 mm (0.3 in.) from the shaft surface. The holes were produced by gun drilling, giving rise to surface defects. The fracture surface was characteristic of fatigue in that it was flat, relatively shiny, and exhibited beach marks. The crack surface was at a 45 deg angle to the axis of the shaft, indicating dominant tensile stresses. The material was the French designation AFNOR 38CD4 (similar to AISI type 4140H) and was in the quenched-and-tempered condition, with a yield strength of about 760 MPa (110 ksi). It was treated to have compressive surface stresses, and the prior-austenite grain size was ASTM 8. Analysis (visual inspection, stress analyses, and macrographs) supported the conclusion that failure was caused by fatigue stress caused by surface defects in the oil holes. Recommendation includes drilling the oil holes by a technique that essentially eliminates surface defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
1