Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Delayed hydrogen cracking
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001766
EISBN: 978-1-62708-241-9
Abstract
During the installation of power transmission lines across a major interstate highway, a temporary anchor stabilizing one of the poles failed, resulting in the loss of the pole and the associated power lines. It also contributed to a single vehicle incident on the adjacent roadway. Post-failure analysis revealed that the fracture was precipitated by a preexisting weld-related crack. Closed form and numerical stress analyses were also conducted, with the results indicating that the anchor was installed properly within the parameters intended by the manufacturer.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.